×

On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type. (English) Zbl 0635.35031

Let \(\Omega\) be a bounded domain in \(R^ N\), \(N\geq 2\), with smooth boundary \(\partial \Omega\) and let \(\partial /\partial n\) denote the outward normal derivative operator. The authors derive a priori estimates for nonnegative solutions of (*): \(d\Delta u-u+h(u)=0\) in \(\Omega\), \(\partial u/\partial n=0\) on \(\partial \Omega\), where \(d>0\) and \(h: [0,\infty)\to [0,\infty)\) is continuous and satisfies \(a_ 0u^{P_ 0}\leq h(u)\leq a_ 1u\) p for sufficiently large u with positive constants \(a_ 0\) and \(a_ 1\) independent of u and the exponents \(p_ 0\) and p satisfying \(1<p_ 0<p<N/(N-2)\). These estimates are used to prove the nonexistence of positive nonconstant solutions for sufficiently large d. The existence of nonconstant solutions near a constant solution via bifurcation theory are also deduced.
A similar analysis is performed and results obtained for systems which include \((**): d\Delta u-u+u\quad p/v\quad q+\sigma =0,\) \(D\Delta v-\nu v+u\quad r/v\quad s=0\) in \(\Omega\), \(\partial u/\partial n=0\), \(\partial v/\partial n=0\), on \(\partial \Omega\), where d, D, and \(\nu\) are positive constants, \(\sigma\) is a nonnegative constant, and the exponents satisfy \(p>1\), \(q>0\), \(r>0\), \(s\geq 0\), and \(0<(p-1)/q<r/(s+1)\). The system (**) arises in biological pattern formation theory.
Reviewer: P.W.Schaefer

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35J55 Systems of elliptic equations, boundary value problems (MSC2000)
35J25 Boundary value problems for second-order elliptic equations
35B32 Bifurcations in context of PDEs
92B05 General biology and biomathematics
Full Text: DOI

References:

[1] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623 – 727. · Zbl 0093.10401 · doi:10.1002/cpa.3160120405
[2] Reinhold Böhme, Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme, Math. Z. 127 (1972), 105 – 126 (German). · Zbl 0254.47082 · doi:10.1007/BF01112603
[3] Haïm Brézis and Walter A. Strauss, Semi-linear second-order elliptic equations in \?\textonesuperior , J. Math. Soc. Japan 25 (1973), 565 – 590. · Zbl 0278.35041 · doi:10.2969/jmsj/02540565
[4] Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321 – 340. · Zbl 0219.46015
[5] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik 12 (1972), 30-39. · Zbl 0297.92007
[6] C. E. Kenig, Private communications.
[7] J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math. 8 (1939), 78-91. · JFM 65.0257.02
[8] H. Meinhardt, Models of biological pattern formation, Academic Press, London and New York, 1982.
[9] Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0142.38701
[10] Wei Ming Ni, On the positive radial solutions of some semilinear elliptic equations on \?\(^{n}\), Appl. Math. Optim. 9 (1983), no. 4, 373 – 380. · Zbl 0527.35026 · doi:10.1007/BF01460131
[11] Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal. 13 (1982), no. 4, 555 – 593. · Zbl 0501.35010 · doi:10.1137/0513037
[12] Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487 – 513. · Zbl 0212.16504
[13] Paul H. Rabinowitz, A bifurcation theorem for potential operators, J. Functional Analysis 25 (1977), no. 4, 412 – 424. · Zbl 0369.47038
[14] Franz Rothe, Global solutions of reaction-diffusion systems, Lecture Notes in Mathematics, vol. 1072, Springer-Verlag, Berlin, 1984. · Zbl 0546.35003
[15] G. Stampacchia, Équations elliptiques à données discontinues, Séminaire Schwartz, 1960/61, no. 4. · Zbl 0092.10401
[16] Izumi Takagi, A priori estimates for stationary solutions of an activator-inhibitor model due to Gierer and Meinhardt, Tôhoku Math. J. (2) 34 (1982), no. 1, 113 – 132. · Zbl 0493.35004 · doi:10.2748/tmj/1178229312
[17] Izumi Takagi, Point-condensation for a reaction-diffusion system, J. Differential Equations 61 (1986), no. 2, 208 – 249. · Zbl 0627.35049 · doi:10.1016/0022-0396(86)90119-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.