×

Diagonals of rational functions, pullbacked \(\mathbf{_2F_1}\) hypergeometric functions and modular forms. (English) Zbl 1408.33008

Summary: We recall that diagonals of rational functions naturally occur in lattice statistical mechanics and enumerative combinatorics. We find that the diagonal of a seven parameter rational function of three variables with a numerator equal to one and a denominator which is a polynomial of degree at most two, can be expressed as a pullbacked \({}_2F_1\) hypergeometric function. This result can be seen as the simplest non-trivial family of diagonals of rational functions. We focus on some subcases such that the diagonals of the corresponding rational functions can be written as a pullbacked \({}_2F_1\) hypergeometric function with two possible rational functions pullbacks algebraically related by modular equations, thus showing explicitly that the diagonal is a modular form. We then generalize this result to nine and ten parameter families adding some selected cubic terms at the denominator of the rational function defining the diagonal. We show that each of these rational functions yields an infinite number of rational functions whose diagonals are also pullbacked \({}_2F_1\) hypergeometric functions and modular forms.

MSC:

33C05 Classical hypergeometric functions, \({}_2F_1\)
11F03 Modular and automorphic functions

References:

[1] Bostan, A.; Boukraa, S.; Christol, G.; Hassani, S.; Maillard, J-M, Ising n-fold integrals as diagonals of rational functions and integrality of series expansions, J. Phys. A: Math. Theor., 46, (2013) · Zbl 1267.82021 · doi:10.1088/1751-8113/46/18/185202
[2] Bostan, A.; Boukraa, S.; Christol, G.; Hassani, S.; Maillard, J-M, Ising {\it n}-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity, (2012) · Zbl 1267.82021
[3] Zenine, N.; Boukraa, S.; Hassani, S.; Maillard, J-M, The Fuchsian differential equation of the square lattice Ising model \(χ^{(3)}\) susceptibility, J. Phys. A: Math. Gen., 37, 9651-9668, (2005) · Zbl 1073.82014 · doi:10.1088/0305-4470/37/41/004
[4] Bostan, A.; Boukraa, S.; Guttmann, A. J.; Hassani, S.; Jensen, I.; Maillard, J-M; Zenine, N., High order Fuchsian equations for the square lattice Ising model: \( \tildeχ{}^{(5)}\), J. Phys. A: Math. Theor., 42, (2009) · Zbl 1171.82005 · doi:10.1088/1751-8113/42/27/275209
[5] Boukraa, S.; Hassani, S.; Jensen, I.; Maillard, J-M; Zenine, N., High-order Fuchsian equations for the square lattice Ising model: \(χ^{(6)}\), J. Phys. A: Math. Theor., 43, (2010) · Zbl 1194.82014 · doi:10.1088/1751-8113/43/11/115201
[6] Boukraa, S.; Hassani, S.; Maillard, J-M; Zenine, N., Singularities of {\it n}-fold integrals of the Ising class and the theory of elliptic curves, J. Phys. A: Math. Theor., 40, 11713-11748, (2007) · Zbl 1128.34057 · doi:10.1088/1751-8113/40/39/003
[7] Guttmann, A. J., Lattice Green’s functions in all dimensions, J. Phys. A: Math. Theor., 43, (2010) · Zbl 1201.82050 · doi:10.1088/1751-8113/43/30/305205
[8] Glasser, M. L.; Guttmann, A. J., Lattice Green function (at 0) for the 4D hypercubic lattice, J. Phys. A: Math. Gen., 27, 7011-7014, (1994) · Zbl 0844.33005 · doi:10.1088/0305-4470/27/21/016
[9] Boukraa, S.; Hassani, S.; Maillard, J-M; Weil, J-A, Differential algebra on lattice Green functions and Calabi-Yau operators, J. Phys. A: Math. Theor., 48, (2014) · Zbl 1288.82007 · doi:10.1088/1751-8113/47/9/095203
[10] Zenine, N.; Hassani, S.; Maillard, J-M, Lattice Green functions: the seven-dimensional face-centred cubic lattice, J. Phys. A: Math. Theor., 48, (2015) · Zbl 1311.34057 · doi:10.1088/1751-8113/48/3/035205
[11] Hassani, S.; Koutschan, C.; Maillard, J-M; Zenine, N., Lattice Green functions: the {\it d}-dimensional face-centred cubic lattice, \(d=8, \, 9, \, 10, \, 11, \, 12\), J. Phys. A: Math. Theor., 49, (2016) · Zbl 1357.35096 · doi:10.1088/1751-8113/49/16/164003
[12] Lipshitz, L.; van der Poorten, A. J., Rational functions, diagonals, automata and arithmetic, 339-358, (1990), Berlin: de Gruyter, Berlin · Zbl 0694.10008
[13] Lipshitz, L., The diagonal of a {\it D}-finite power series is {\it D}-finite, J. Algebr., 113, 373-378, (1988) · Zbl 0657.13024 · doi:10.1016/0021-8693(88)90166-4
[14] Christol, G., Diagonales de fractions rationnelles et équations différentielles, Study Group on Ultrametric Analysis, 10th Year: 1982/83, No. 2, Exp. No. 18, 1-10, (1984), Paris: Institute Henri Poincaré, Paris · Zbl 0534.12018
[15] Christol, G., Diagonales de fractions rationnelles et équations de Picard-Fuchs, Study Group on Ultrametric Analysis, 12th Year, 1984/85, No.1, Exp. No. 13, 1-12, (1985), Paris: Secrétariat Math., Paris · Zbl 0599.14009
[16] Christol, G., Diagonales de fractions rationnelles, Séminaire de Théorie des Nombres, Paris 1986-87, 65-90, (1988), Boston, MA: Birkhäuser, Boston, MA · Zbl 0694.13013
[17] Christol, G., Globally bounded solutions of differential equations, 45-64, (1990), Berlin: Springer, Berlin · Zbl 0705.12006
[18] Assis, M.; Boukraa, S.; Hassani, S.; van Hoeij, M.; Maillard, J-M; McCoy, B. M., Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equations, J. Phys. A: Math. Theor., 45, (2012) · Zbl 1273.82008 · doi:10.1088/1751-8113/45/7/075205
[19] Bostan, A.; Boukraa, S.; Hassani, S.; van Hoeij, M.; Maillard, J-M; Weil, J-A; Zenine, N. J., The Ising model: from elliptic curves to modular forms and Calabi-Yau equations, J. Phys. A: Math. Theor., 44, (2011) · Zbl 1208.82006 · doi:10.1088/1751-8113/44/4/045204
[20] Assis, M.; van Hoeij, M.; Maillard, J-M, The perimeter generating functions of three-choice, imperfect, and one-punctured staircase polygons, J. Phys. A: Math. Theor., 49, (2016) · Zbl 1365.05014 · doi:10.1088/1751-8113/49/21/214002
[21] Bostan, A.; Boukraa, S.; Maillard, J-M; Weil, J-A, Diagonal of rational functions and selected differential Galois groups, J. Phys. A: Math. Theor., 48, (2015) · Zbl 1334.82007 · doi:10.1088/1751-8113/48/50/504001
[22] Abdelaziz, Y.; Maillard, J-M, Modular forms, Schwarzian conditions, and symmetries of differential equations in physics, J. Phys. A: Math. Theor., 49, (2016) · Zbl 1381.33011
[23] Maier, R. S., On rationally parametrized modular equations, J. Ramanujan Math. Soc., 24, 1-73, (2009) · Zbl 1214.11049
[24] Stiller, P. F., Classical automorphic forms and hypergeometric functions, J. Number Theory, 28, 219-232, (1988) · Zbl 0644.10019 · doi:10.1016/0022-314X(88)90067-4
[25] Shen, L. C., A note on Ramanujan’s identities involving the hypergeometric function \(_2F_1(1/6, 5/6; 1, z)\), Ramanujan J., 30, 211-222, (2013) · Zbl 1264.33019 · doi:10.1007/s11139-011-9360-8
[26] Furstenberg, H., Algebraic functions over finite fields, J. Algebr., 7, 271-277, (1967) · Zbl 0175.03903 · doi:10.1016/0021-8693(67)90061-0
[27] Denef, J.; Lipshitz, L., Algebraic power series and diagonals, J. Number Theory, 26, 46-67, (1987) · Zbl 0609.12020 · doi:10.1016/0022-314X(87)90095-3
[29] van Hoeij, Mark, hypergeometricsols
[30] Bostan, A.; Lairez, P.; Salvy, B., Creative telescoping for rational functions using the Griffiths-Dwork method, 93-100, (2013), New York: ACM, New York · Zbl 1360.68921
[31] Chen, S.; Kauers, M.; Singer, M. F., Telescopers for rational and algebraic functions via residues, 130-137, (2012), New York: ACM, New York · Zbl 1323.68592
[32] Bostan, A., Calcul Formel pour la Combinatoire des Marches, Habilitation à Diriger des Recherches, (2017)
[33] Bostan, A.; Chyzak, F.; van Hoej, M.; Pech, L., Explicit formula for the generating series of Diagonal 3D rook paths, Sém. Lothar. Comb., 66, 27, (2011) · Zbl 1295.05028
[34] Bostan, A.; Chyzak, F.; van Hoeij, M.; Pech, L., Explicit formula for the generating functions of walks with small steps in the quarter plane, Eur. J. Comb., 61, 242-275, (2017) · Zbl 1352.05013 · doi:10.1016/j.ejc.2016.10.010
[35] Bostan, A.; Chyzak, F.; van Hoeij, M.; Pech, L., Explicit formula for the generating series of diagonal 3D rook paths, Sém. Lotar. Comb., 66, 27, (2011) · Zbl 1295.05028
[36] Garvan, F. G., Ramanujan’s theories of elliptic functions to alternative bases—a symbolic excursion, J. Symb. Comput., 20, 517-536, (1995) · Zbl 0849.68063 · doi:10.1006/jsco.1995.1063
[37] Abdelaziz, Y.; Maillard, J-M, Schwarzian conditions for linear differential operators with selected differential Galois groups, J. Phys. A: Math. Theor., 50, (2017) · Zbl 1382.34017 · doi:10.1088/1751-8121/aa8efd
[38] Ovsienko, V.; Tabachnikov, S., What is … the schwarzian derivative?, Not. AMS, 56, 34-36, (2009) · Zbl 1176.53002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.