×

Second spectrum of modules and spectral spaces. (English) Zbl 1408.13021

All rings \(R\) in this paper are commutative with identity and all modules are unital right \(R\)-modules. Recall that a module \(M\) is said to be a second module if \(M \neq 0\) and \(\mathrm{ann}_{R}(M) =\mathrm{Ann}_{R}(M/N)\) for every proper submodule \(N\) of \(M\). A second submodule \(N\) of a module \(M\) is called a (\(P\)-)second submodule of \(M\) if it is a second module by itself (and will then have an annihilator that is a prime ideal \(P\) of \(R\). The set of all second modules of a module \(M\) is called the second spectrum of \(M\) and is denoted by \(\mathrm{Spec}^{s}(M)\). It is assumed that \(\mathrm{Spec}^{s}(M) \neq \phi\). The map \(\psi^{s} : \mathrm{Spec}^{s}(M) \rightarrow \mathrm{Spec}(R/\mathrm{Ann}_{R}(M))\) defined by \(\psi_{s}(S) = \mathrm{ann}_{R}(S)\) is called the natural map of \(\mathrm{Spec}^{s}(M)\). If this natural map is injective for an \(R\)-module \(M\), then \(M\) is said to be \(X^{s}\)-injective. \(X^{s}\)-injective modules are studied, a characterization is found of the second submodules of an \(X^{s}\)-injective module and conditions for the existence of a maximal second submodule are investigated. \(X^{s}\)-injectives over a one-dimensional domain are characterized.
Every weak co-multiplication module over a one-dimensional domain is shown to be cotop. These results are used to study the dual Zariski topology \((\mathrm{Spec}^{s}(M), \tau^{s})\). It is shown that if \(R\) is a Dedekind domain and \(M\) an \(X^{s}\)-injective \(R\)-module, then \((\mathrm{Spec}^{s}(M), \tau^{s})\) is a spectral space if and only if \(\mathrm{Spec}^{s}(M)\) is a finite set or \(\operatorname{div}(M_{R}) \neq 0\). More results on \((\mathrm{Spec}^{s}(M), \tau^{s})\) are found for specific rings, such as one-dimensional integral domains.
A module is said to be secondful if \(\psi^{s}\) is surjective. For a secondful module \(M\), the combinatorial dimension of \((\mathrm{Spec}^{s}(M), \tau^{s})\) and the Krull dimension of \(R/\mathrm{Ann}_{R}(M)\) are shown to be equal and several equivalences are found for the combinatorial dimension of \((\mathrm{Spec}^{s}(M), \tau^{s})\) to be zero. In this case, all the irreducible components of \((\mathrm{Spec}^{s}(M), \tau^{s})\) are found.
The final section deals with conditions for \(\mathrm{Spec}^{s}(M)\) to be a spectral space in the case of two different topologies.

MSC:

13C13 Other special types of modules and ideals in commutative rings
13C05 Structure, classification theorems for modules and ideals in commutative rings
Full Text: DOI

References:

[1] Abuhlail, J.Y.: A dual Zariski topology for modules. Topol. Appl. 158, 457-467 (2011) · Zbl 1226.16006 · doi:10.1016/j.topol.2010.11.021
[2] Abuhlail, J.Y.: Zariski topologies for coprime and second submodules. Algebra Colloquium (2015). doi:10.1142/S1005386715000061 · Zbl 1312.16002 · doi:10.1142/S1005386715000061
[3] Ansari-Toroghy, H., Ovlyaee-Sarmazdeh, R.: On the prime spectrum of X-injective modules. Commun. Algebra 38(7), 2606-2621 (2010) · Zbl 1197.13012 · doi:10.1080/00927870903036339
[4] Ansari-Toroghy, H., Farshadifar, F.: On the dual notion of prime submodules. Algebra Colloquium 19(1), 1109-1116 (2012) · Zbl 1294.13012 · doi:10.1142/S1005386712000880
[5] Ansari-Toroghy, H., Farshadifar, F.: On the dual notion of prime submodules II. Mediterr. J. Math. 9(2), 327-336 (2012) · Zbl 1253.13013 · doi:10.1007/s00009-011-0129-5
[6] Ansari-Toroghy, H., Farshadifar, F.: The Zariski topology on the second spectrum of a module. Algebra Colloquium (2014). doi:10.1142/S1005386714000625 · Zbl 1309.13011 · doi:10.1142/S1005386714000625
[7] Ansari-Toroghy, H., Farshadifar, F.: On the dual notion of prime radicals of submodules. Asian-Eur. J. Math 6(2), 1350024 (2013). doi:10.1142/S1793557113500241 · Zbl 1278.13012 · doi:10.1142/S1793557113500241
[8] Ansari-Toroghy, H., Keyvani, S., Farshadifar, F.: On the second spectrum of a module (II). Bull. Malays. Math. Sci. Soc. 39(3), 1089-1103 (2016) · Zbl 1348.13019 · doi:10.1007/s40840-015-0225-y
[9] Ansari-Toroghy, H., Pourmortazavi, S.S., Keyvani, S.: Strongly cotop modules. J. Algebra Relat. Top. 3(1), 13-29 (2015) · Zbl 1333.13017
[10] Behboodi, M., Haddadi, M.R.: Classical Zariski topology of modules and spectral spaces I. Int. Electron. J. Algebra 4, 104-130 (2008) · Zbl 1195.16002
[11] Behboodi, M., Haddadi, M.R.: Classical Zariski topology of modules and spectral spaces II. Int. Electron. J. Algebra 4, 131-148 (2008) · Zbl 1195.16003
[12] Bourbaki, N.: Algèbre Commutative Chaps. 1, 2. Hermann, Paris (1961)
[13] Çeken, S., Alkan, M.: Dual of Zariski topology for modules. In: Book Series: AIP Conference Proceedings, Vol. 1389, No. (1) (pp. 357-360) (2011)
[14] Çeken, S., Alkan, M., Smith, P.F.: Second modules over noncommutative rings. Commun. Algebra 41(1), 83-98 (2013) · Zbl 1270.16001 · doi:10.1080/00927872.2011.623026
[15] Çeken, S., Alkan, M., Smith, P.F.: The dual notion of the prime radical of a module. J. Algebra 392, 265-275 (2013) · Zbl 1301.16001 · doi:10.1016/j.jalgebra.2013.06.015
[16] Çeken, S., Alkan, M.: On graded second and coprimary modules and graded secondary representations. Bull. Malays. Math. Sci. Soc. 38(4), 1317-1330 (2015) · Zbl 1338.16046 · doi:10.1007/s40840-014-0097-6
[17] Çeken, S., Alkan, M.: On second submodules. Contemp. Math. 634, 67-77 (2015) · Zbl 1326.16001 · doi:10.1090/conm/634/12691
[18] Çeken, S., Alkan, M.: On the second spectrum and the second classical Zariski topology of a module. J. Algebra Appl. 14(10), 1550150 (2015). doi:10.1142/S0219498815501509 · Zbl 1333.16040 · doi:10.1142/S0219498815501509
[19] Farshadifar, F.: Modules with Noetherian second spectrum. J. Algebra Relat. Top. 1(1), 19-30 (2013) · Zbl 1301.13013
[20] Gilmer, R., Heinzer, W.: The Laskerian property, power series rings and Noetherian spectra. Proc. Am. Math. Soc. 79, 13-16 (1980) · Zbl 0447.13009 · doi:10.1090/S0002-9939-1980-0560575-6
[21] Hochster, M.: Prime ideal structure in commutative rings. Trans. Am. Math. Soc. 142, 43-60 (1969) · Zbl 0184.29401 · doi:10.1090/S0002-9947-1969-0251026-X
[22] Lu, C.P.: The Zariski topology on the prime spectrum of a module. Houst. J. Math. 25(3), 417-432 (1999) · Zbl 0979.13005
[23] Lu, C.P.: Modules with Noetherian spectrum. Commun. Algebra 38, 807-828 (2010) · Zbl 1189.13012 · doi:10.1080/00927870802578050
[24] Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986) · Zbl 0603.13001
[25] McCasland, R.L., Moore, M.E., Smith, P.F.: On the spectrum of a module over a commutative ring. Commun. Algebra 25, 79-103 (1997) · Zbl 0876.13002 · doi:10.1080/00927879708825840
[26] Ohm, J., Pendleton, R.L.: Rings with Noetherian spectrum. Duke Math. J. 35, 631-639 (1968) · Zbl 0172.32201 · doi:10.1215/S0012-7094-68-03565-5
[27] Sharpe, D.W., Vamos, P.: Injective Modules. Cambridge University Press, London (1972) · Zbl 0245.13001
[28] Yassemi, S.: The dual notion of prime submodules. Arch. Math. (Brno) 37, 273-278 (2001) · Zbl 1090.13005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.