×

On the prime spectrum of \(X\)-injective modules. (English) Zbl 1197.13012

Let \(M\) be a unitary \(R\)-module, \(R\) a commutative ring with \(1 \neq 0\). \(M\) is said to be \(X\)-injective, where \(X=\mathrm{Spec}(M)\) if either \(X= \phi\) or \(X \neq \phi\) and the natural map of \(X\) is injective. It is shown that every top module and every weak multiplication module are \(X\)-injective, but by means of examples the converse is shown to be false. In the case of a finitely generated module \(M\) these notions do coincide, as does that of a multiplication module.
Characterizations of \(X\)-injective modules are found; for example, \(M\) is an \(X\)-injective \(R\)-module if and only if \(M_{p}\) is an \(X\)-injective \(R_{p}\)-module for every prime ideal \(p\) of \(R\). \(X\)-injective modules are characterized in some special cases. For example, in the case where \(M\) is a free \(R\)-module, or where \(R\) is a perfect ring, it is proven that \(M\) is \(X\)-injective if and only if \(M\) is cyclic, if and only if \(M\) is a top module. For the case where \(M\) is a projective \(R\)-module, \(M\) is \(X\)-injective if and only if \(M\) is locally cyclic, if and only if \(M\) is a top module.
A domain over which every \(X\)-injective \(R\)-module is cyclic, is shown to be a field. If \(R\) is a PID, then an \(R\)-module \(M\) is proven to be a weak multiplication module if and only if \(M\) is a top module which is torsion or torsion-free.
In the final section, primeful \(R\)-modules are considered, i.e. \(R\)-modules such that either \(M=(0)\) or \(M \neq (0)\) and the natural map of \(X\) is surjective. \(\tau\) denotes the Zariski topology on \(X\) and \(\tau ^{*}\) the quasi-Zariski topology. A topological space \(T\) is called a spectral space if \(T\) is homeomorphic to \(\mathrm{Spec}(S)\) with the Zariski topology for some ring \(S\). A nonzero primeful top \(Z\)-module \(M\) is introduced for which \((X,\tau )\) is a spectral space, but \((X,\tau ^{*})\) is not spectral. Sufficient conditions for \((X,\tau ^{*})\) to be a spectral space, for the case where \(M\) is a primeful top \(R\)-module, are subsequently found.

MSC:

13C13 Other special types of modules and ideals in commutative rings
13C99 Theory of modules and ideals in commutative rings
Full Text: DOI

References:

[1] DOI: 10.1080/00927879508825270 · Zbl 0833.13004 · doi:10.1080/00927879508825270
[2] Atiyah M. F., Introduction to Commutative Algebra (1969) · Zbl 0175.03601
[3] DOI: 10.1023/B:CMAJ.0000024500.35257.39 · Zbl 1083.13502 · doi:10.1023/B:CMAJ.0000024500.35257.39
[4] DOI: 10.1090/S0002-9947-1960-0157984-8 · doi:10.1090/S0002-9947-1960-0157984-8
[5] DOI: 10.1090/S0002-9947-1969-0251026-X · doi:10.1090/S0002-9947-1969-0251026-X
[6] DOI: 10.2307/1970252 · Zbl 0083.25802 · doi:10.2307/1970252
[7] Lu C.-P., Comment. Math. Univ. St. Pauli 33 pp 61– (1984)
[8] Lu C.-P., Math. Japonica 34 pp 211– (1989)
[9] DOI: 10.1080/00927879508825430 · Zbl 0853.13011 · doi:10.1080/00927879508825430
[10] Lu C.-P., Houston J. Math. 25 pp 417– (1999)
[11] DOI: 10.1081/AGB-120021886 · Zbl 1021.13010 · doi:10.1081/AGB-120021886
[12] Lu C.-P., Houston J. Math. 33 pp 125– (2007)
[13] DOI: 10.1080/00927879708825840 · Zbl 0876.13002 · doi:10.1080/00927879708825840
[14] DOI: 10.1081/AGB-120014684 · Zbl 1049.13001 · doi:10.1081/AGB-120014684
[15] Sims B. T., Fundamentals of Topology (1976) · Zbl 0324.54002
[16] DOI: 10.1081/AGB-120029915 · Zbl 1073.13006 · doi:10.1081/AGB-120029915
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.