×

Covariant affine integral quantization(s). (English) Zbl 1407.81111

The manuscript is a continuation of work on covariant integral quantization on a Lie group which was introduced earlier by H. Bergeron and the first author [Ann. Phys. 344, 43–68 (2014; Zbl 1343.81157)]. The general setting is as follows: Let \(G\) be a Lie group with left Haar measure \(d\mu\). Suppose \(U\) is an irreducible representation of \(G\) on a Hilbert space \(\mathcal{H}\). Then we define an operator associating to a function or distribution on \(G\) by \(f\mapsto A_f=\int_G f(g)U(g)MU(g)^*d\mu(g)\) for a given bounded operator \(M\) on \(\mathcal{H}\) that satisfies \(c_M\int_G U(g)MU(g)^*d\mu(g)=I\) for a normalization constant \(c_M\).
If \(G\) is the Heisenberg group, \(U\) the Schrödinger representation and \(M\) a rank-one operator, then the operator \(A_f\) is a localization operator and if \(M\) is a density operator, then \(A_f\) is a so-called mixed-state localization operator, see the results in [the reviewer and E. Skrettingland, J. Math. Pures Appl. (9) 118, 288–316 (2018; Zbl 1486.47086)].
The main goal of this paper is to define covariant integral quantization for affine groups.

MSC:

81S10 Geometry and quantization, symplectic methods
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
81R30 Coherent states

References:

[1] Bergeron, H.; Gazeau, J.-P., Integral quantizations with two basic examples, Ann. Phys. (NY), 344, 43-68 (2014) · Zbl 1343.81157 · doi:10.1016/j.aop.2014.02.008
[2] Ali, S. T.; Antoine, J.-P.; Gazeau, J.-P., Coherent States, Wavelets and Their Generalizations (2013)
[3] Baldiotti, M.; Fresneda, R.; Gazeau, J.-P., ICMP 2013
[4] Heller, B.; Gazeau, J.-P., Positive-operator valued measure (POVM) quantization, Axioms, 4, 1-29 (2015) · Zbl 1318.81041 · doi:10.3390/axioms4010001
[5] Bergeron, H.; Dapor, A.; Gazeau, J.-P.; Małkiewicz, P., Smooth big bounce from affine quantization, Phys. Rev. D, 89, 083522 (2014) · doi:10.1103/PhysRevD.89.083522
[6] Bergeron, H.; Dapor, A.; Gazeau, J.-P.; Małkiewicz, P., Smooth bounce in affine quantization of Bianchi I, Phys. Rev. D, 91, 124002 (2015) · doi:10.1103/PhysRevD.91.124002
[7] Bergeron, H.; Czuchry, E.; Gazeau, J.-P.; Małkiewicz, P.; Piechocki, W., Smooth quantum dynamics of the Mixmaster Universe, Phys. Rev. D, 92, 061302(R) (2015) · doi:10.1103/PhysRevD.92.061302
[8] Bergeron, H.; Czuchry, E.; Gazeau, J.-P.; Małkiewicz, P.; Piechocki, W., Singularity avoidance in quantum Mixmaster Universe, Phys. Rev. D, 92, 124018 (2015) · doi:10.1103/PhysRevD.92.124018
[9] Bergeron, H., Czuchry, E., Gazeau, J.-P., and Małkiewicz, P., “Inflationary aspects of quantum Mixmaster Universe” (submitted); e-print [gr-qc].
[10] Bergeron, H.; Czuchry, E.; Gazeau, J.-P.; Małkiewicz, P., Vibronic framework for Mixmaster Universe, Phys. Rev. D, 93, 064080 (2016) · doi:10.1103/PhysRevD.93.064080
[11] Cohen, L., Generalized phase-space distribution functions, J. Math. Phys., 7, 781-786 (1966) · doi:10.1063/1.1931206
[12] Cohen, L., The Weyl Operator and Its Generalization, 9 (2013) · Zbl 1393.47001
[13] 13.B. S.Agarwal and E.Wolf, “Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I. Mapping theorems and ordering of functions of noncommuting operators,” Phys. Rev. D2, 2161 (1970)10.1103/physrevd.2.2161;B. S.Agarwal and E.Wolf, “Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. II. Quantum mechanics in phase space,” Phys. Rev. D2, 2187 (1970)10.1103/physrevd.2.2187;B. S.Agarwal and E.Wolf, “Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. III. A generalized wick theorem and multitime mapping,” Phys. Rev. D2, 2206 (1970).10.1103/physrevd.2.2206 · Zbl 1227.81198
[14] 14.J.Bertrand and P.Bertrand, “A class of affine Wigner functions with extended covariance properties,” J. Math. Phys.33, 2515-2527 (1992)10.1063/1.529570;Erratum, J.Bertrand and P.Bertrand, J. Math. Phys.34, 885 (1993).10.1063/1.530230 · Zbl 0787.22022
[15] Bertrand, J.; Bertrand, P., Symbolic calculus on the time-frequency half-plane, J. Math. Phys., 39, 4071-4090 (1998) · Zbl 0931.94003 · doi:10.1063/1.532484
[16] Ali, S. T.; Atakishiyev, N. M.; Chumakov, S. M.; Wolf, K. B., The Wigner function for general Lie groups and the wavelet transform, Ann. Henri Poincaré, 1, 685-714 (2000) · Zbl 1024.81015 · doi:10.1007/PL00001012
[17] Ali, S. T.; Führ, H.; Krasowska, A. E., Plancherel inversion as unified approach to wavelet transforms and Wigner functions, Ann. Inst. Henri Poincaré, 4, 1015-1050 (2003) · Zbl 1049.81043 · doi:10.1007/s00023-003-0154-4
[18] Gayral, V.; Gracia-Bondía, J. M.; Várilly, J. C., Fourier analysis on the affine group, quantization and noncompact Connes geometries, J. Noncommutative Geom., 2, 215-261 (2008) · Zbl 1148.43005 · doi:10.4171/JNCG/20
[19] Jung, F., Canonical group quantization and boundary conditions (2012)
[20] Barut, A. O.; Ra̧czka, R., Theory of Group Representations and Applications (1977)
[21] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. I. Functional Analysis (1980) · Zbl 0459.46001
[22] Hall, B. C.; Jorgenson, J.; Walling, L., The range of the heat operator, The Ubiquitous Heat Kernel, 398, 203-231 (2006) · Zbl 1114.58016
[23] Gel’fand, I. M.; Naïmark, M. A., Unitary representations of the group of linear transformations of the straight line, Dokl. Akad. Nauk SSSR, 55, 567-570 (1947) · Zbl 0029.00503
[24] 24.E. W.Aslaksen and J. R.Klauder, “Unitary representations of the affine group,” J. Math. Phys.15, 206 (1968)10.1063/1.1664570;E. W.Aslaksen and J. R.Klauder, “Continuous representation theory using the affine group,” J. Math. Phys.10, 2267 (1969).10.1063/1.1664833 · Zbl 0184.54601
[25] Combes, J.-M.; Grossmann, A.; Tchamitchian, Ph., Wavelets, Time-Frequency Methods and Phase Space (Proceedings of Marseille 1987) (1990) · Zbl 0718.00009
[26] Meyer, Y., Wavelets and Applications (Proceedings of Marseille 1989) (1991)
[27] Meyer, Y.; Roques, S., Progress in Wavelet Analysis and Applications (Proceedings of Toulouse 1992) (1993) · Zbl 0841.00017
[28] Magnus, W.; Oberhettinger, F.; Soni, R. P., Formulas and Theorems for the Special Functions of Mathematical Physics (1966) · Zbl 0143.08502
[29] Gradshteyn, I. S.; Ryzhik, I. M.; Jeffrey, A.; Zwillinger, D., Table of Integrals, Series, and Products (2007) · Zbl 1208.65001
[30] Reed, M.; Simon, B., Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness, 2 (1975) · Zbl 0308.47002
[31] Gesztesy, F.; Kirsch, W., One-dimensional Schrödinger operators with interactions singular on a discrete set, J. Reine Angew. Math., 1985, 362, 28 · Zbl 0565.34018 · doi:10.1515/crll.1985.362.28
[32] 32.J. R.Klauder, “Enhanced quantization: A primer,” J. Phys. A: Math. Theor.45, 285304-1-285304-8 (2012), e-print arXiv:1204.287010.1088/1751-8113/45/28/285304;J. R.Klauder, Completing Canonical Quantization, and Its Role in Nontrivial Scalar Field Quantization e-print arXiv:1308.4658 [hep-th]. · Zbl 1247.81013
[33] Griffiths, D. J., Introduction to Quantum Mechanics (2005)
[34] Ali, S. T.; Krasowska, A. E.; Murenzi, R., Wigner functions from the two-dimensional wavelet group, J. Opt. Soc. Am. A, 17, 2277-2287 (2000) · doi:10.1364/JOSAA.17.002277
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.