Covariant affine integral quantization of the half-plane is studied and applied to the motion of a particle on the half-line. We examine the consequences of different quantizer operators built from weight functions on the half-plane. To illustrate the procedure, we examine two particular choices of the weight function, yielding thermal density operators and affine inversion, respectively. The former gives rise to a temperature-dependent probability distribution on the half-plane whereas the latter yields the usual canonical quantization and a quasi-probability distribution (affine Wigner function) which is real, marginal in both momentum p and position q.

1.
H.
Bergeron
and
J.-P.
Gazeau
, “
Integral quantizations with two basic examples
,”
Ann. Phys. (NY)
344
,
43
68
(
2014
); e-print arXiv:1308.2348 [quant-ph, math-ph].
2.
S. T.
Ali
,
J.-P.
Antoine
, and
J.-P.
Gazeau
, in
Coherent States, Wavelets and Their Generalizations
, 2nd ed.
Theoretical and Mathematical Physics
(
Springer
,
New York
,
2013
), Chap. 11.
3.
M.
Baldiotti
,
R.
Fresneda
, and
J.-P.
Gazeau
, in
ICMP 2013
[“Three examples of covariant integral quantization,” PoS(ICMP 2013)003].
4.
B.
Heller
and
J.-P.
Gazeau
, “
Positive-operator valued measure (POVM) quantization
,”
Axioms
4
,
1
29
(
2015
).
5.
H.
Bergeron
,
A.
Dapor
,
J.-P.
Gazeau
, and
P.
Małkiewicz
, “
Smooth big bounce from affine quantization
,”
Phys. Rev. D
89
,
083522
(
2014
); e-print arXiv:1305.0653.
6.
H.
Bergeron
,
A.
Dapor
,
J.-P.
Gazeau
, and
P.
Małkiewicz
, “
Smooth bounce in affine quantization of Bianchi I
,”
Phys. Rev. D
91
,
124002
(
2015
); e-print arXiv:1501.07718 [gr-qc].
7.
H.
Bergeron
,
E.
Czuchry
,
J.-P.
Gazeau
,
P.
Małkiewicz
, and
W.
Piechocki
, “
Smooth quantum dynamics of the Mixmaster Universe
,”
Phys. Rev. D
92
,
061302(R)
(
2015
); e-print arXiv:1501.02174 [gr-qc].
8.
H.
Bergeron
,
E.
Czuchry
,
J.-P.
Gazeau
,
P.
Małkiewicz
, and
W.
Piechocki
, “
Singularity avoidance in quantum Mixmaster Universe
,”
Phys. Rev. D
92
,
124018
(
2015
); e-print arXiv:1501.07871 [gr-qc].
9.
H.
Bergeron
,
E.
Czuchry
,
J.-P.
Gazeau
, and
P.
Małkiewicz
, “
Inflationary aspects of quantum Mixmaster Universe
” (submitted); e-print arXiv: 1511.05790 [gr-qc].
10.
H.
Bergeron
,
E.
Czuchry
,
J.-P.
Gazeau
, and
P.
Małkiewicz
, “
Vibronic framework for Mixmaster Universe
,”
Phys. Rev. D
93
,
064080
(
2016
); e-print arXiv:1512.00304v1 [gr-qc].
11.
L.
Cohen
, “
Generalized phase-space distribution functions
,”
J. Math. Phys.
7
,
781
786
(
1966
).
12.
L.
Cohen
,
The Weyl Operator and Its Generalization
,
Pseudo-Differential Operators: Theory and Applications
Vol.
9
(
Birkhaüser
,
2013
).
13.
B. S.
Agarwal
and
E.
Wolf
, “
Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I. Mapping theorems and ordering of functions of noncommuting operators
,”
Phys. Rev. D
2
,
2161
(
1970
);
B. S.
Agarwal
and
E.
Wolf
, “
Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. II. Quantum mechanics in phase space
,”
Phys. Rev. D
2
,
2187
(
1970
);
B. S.
Agarwal
and
E.
Wolf
, “
Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. III. A generalized wick theorem and multitime mapping
,”
Phys. Rev. D
2
,
2206
(
1970
).
14.
J.
Bertrand
and
P.
Bertrand
, “
A class of affine Wigner functions with extended covariance properties
,”
J. Math. Phys.
33
,
2515
2527
(
1992
);
Erratum,
J.
Bertrand
and
P.
Bertrand
,
J. Math. Phys.
34
,
885
(
1993
).
15.
J.
Bertrand
and
P.
Bertrand
, “
Symbolic calculus on the time-frequency half-plane
,”
J. Math. Phys.
39
,
4071
4090
(
1998
).
16.
S. T.
Ali
,
N. M.
Atakishiyev
,
S. M.
Chumakov
, and
K. B.
Wolf
, “
The Wigner function for general Lie groups and the wavelet transform
,”
Ann. Henri Poincaré
1
,
685
714
(
2000
).
17.
S. T.
Ali
,
H.
Führ
, and
A. E.
Krasowska
, “
Plancherel inversion as unified approach to wavelet transforms and Wigner functions
,”
Ann. Inst. Henri Poincaré
4
,
1015
1050
(
2003
).
18.
V.
Gayral
,
J. M.
Gracia-Bondía
, and
J. C.
Várilly
, “
Fourier analysis on the affine group, quantization and noncompact Connes geometries
,”
J. Noncommutative Geom.
2
,
215
261
(
2008
).
19.
F.
Jung
, “
Canonical group quantization and boundary conditions
,” Doktor der Naturwissenschaften Dissertation,
Johannes Gutenberg-Universität
, Mainz,
2012
available at Jung Dissertation.
20.
A. O.
Barut
and
R.
Ra̧czka
,
Theory of Group Representations and Applications
(
PWN
,
Warszawa
,
1977
).
21.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics. I. Functional Analysis
(
Academic Press
,
New York
,
1980
).
22.
B. C.
Hall
, “
The range of the heat operator
,” in
The Ubiquitous Heat Kernel
,
Contemporary Mathematics
, edited by
J.
Jorgenson
and
L.
Walling
(
American Mathematical Society
,
Providence, RI
,
2006
), Vol.
398
, pp.
203
231
.
23.
I. M.
Gel’fand
and
M. A.
Naïmark
, “
Unitary representations of the group of linear transformations of the straight line
,”
Dokl. Akad. Nauk SSSR
55
,
567
570
(
1947
).
24.
E. W.
Aslaksen
and
J. R.
Klauder
, “
Unitary representations of the affine group
,”
J. Math. Phys.
15
,
206
(
1968
);
E. W.
Aslaksen
and
J. R.
Klauder
, “
Continuous representation theory using the affine group
,”
J. Math. Phys.
10
,
2267
(
1969
).
25.
Wavelets, Time-Frequency Methods and Phase Space (Proceedings of Marseille 1987)
, 2nd ed., edited by
J.-M.
Combes
,
A.
Grossmann
, and
Ph.
Tchamitchian
(
Springer-Verlag
,
Berlin
,
1990
).
26.
Wavelets and Applications (Proceedings of Marseille 1989)
, edited by
Y.
Meyer
(
Springer-Verlag
,
Berlin, Masson, Paris
,
1991
).
27.
Progress in Wavelet Analysis and Applications (Proceedings of Toulouse 1992)
, edited by
Y.
Meyer
and
S.
Roques
(
ED Frontières
,
Gif-sur-Yvette
,
1993
).
28.
W.
Magnus
,
F.
Oberhettinger
, and
R. P.
Soni
,
Formulas and Theorems for the Special Functions of Mathematical Physics
(
Springer-Verlag
,
Berlin, Heidelberg, New York
,
1966
).
29.
I. S.
Gradshteyn
and
I. M.
Ryzhik
, in
Table of Integrals, Series, and Products
, 7th ed., edited by
A.
Jeffrey
and
D.
Zwillinger
(
Academic Press
,
New York
,
2007
).
30.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness
(
Academic Press
,
New York
,
1975
), Vol.
2
.
31.
F.
Gesztesy
and
W.
Kirsch
, “
One-dimensional Schrödinger operators with interactions singular on a discrete set
,”
J. Reine Angew. Math.
1985
(
362
),
28
.
32.
J. R.
Klauder
, “
Enhanced quantization: A primer
,”
J. Phys. A: Math. Theor.
45
,
285304-1
285304-8
(
2012
), e-print arXiv:1204.2870;
J. R.
Klauder
,
Completing Canonical Quantization, and Its Role in Nontrivial Scalar Field Quantization
e-print arXiv:1308.4658 [hep-th].
33.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
, 2nd ed. (
Pearson Education
,
2005
), Problem 2.42.
34.
S. T.
Ali
,
A. E.
Krasowska
, and
R.
Murenzi
, “
Wigner functions from the two-dimensional wavelet group
,”
J. Opt. Soc. Am. A
17
,
2277
2287
(
2000
).
You do not currently have access to this content.