×

Quantum coherence via conditional entropy. (English) Zbl 1407.81026

Summary: Quantum coherence characterizes the non-classical feature of a single party system with respect to a local basis. Based on a recently introduced resource framework, coherence can be regarded as a resource and be systematically manipulated and quantified. Operationally, coherence quantifies the intrinsic randomness of the outcome of the projective measurement in the system’s computational basis. However, such a relation is only proven when randomness is characterized by the von Neumann entropy. In this work, we consider several recently proposed coherence measures and relate them to the general uncertainties of the projective measurement outcome conditioned on all the other systems. Our work thus provides a unified framework for redefining several coherence measures via general conditional entropies. Based on the relation, we numerically calculate the coherence measures via semi-definite programming. Furthermore, we discuss the operational meaning of the unified definition. Our result highlights the close relation between single partite coherence and bipartite quantum correlation.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P68 Quantum computation
81P15 Quantum measurement theory, state operations, state preparations
94A17 Measures of information, entropy

References:

[1] Aharonov, Y.; Susskind, L., Phys. Rev., 155, 1428-1431, (1967) · doi:10.1103/PhysRev.155.1428
[2] Kitaev, A.; Mayers, D.; Preskill, J., Phys. Rev. A, 69, (2004) · doi:10.1103/PhysRevA.69.052326
[3] Bartlett, S. D.; Rudolph, T.; Spekkens, R. W., Rev. Mod. Phys., 79, 555-609, (2007) · Zbl 1205.81042 · doi:10.1103/RevModPhys.79.555
[4] Ma, X.; Yuan, X.; Cao, Z.; Qi, B.; Zhang, Z., NPJ Quantum Inf., 2, 16021, (2016) · doi:10.1038/npjqi.2016.21
[5] Herrero-Collantes, M.; Garcia-Escartin, J. C., Rev. Mod. Phys., 89, (2017) · doi:10.1103/RevModPhys.89.015004
[6] Aberg, J., (2006)
[7] Baumgratz, T.; Cramer, M.; Plenio, M. B., Phys. Rev. Lett., 113, (2014) · doi:10.1103/PhysRevLett.113.140401
[8] Yuan, X.; Zhou, H.; Cao, Z.; Ma, X., Phys. Rev. A, 92, (2015) · doi:10.1103/PhysRevA.92.022124
[9] Napoli, C.; Bromley, T. R.; Cianciaruso, M.; Piani, M.; Johnston, N.; Adesso, G., Phys. Rev. Lett., 116, (2016) · doi:10.1103/PhysRevLett.116.150502
[10] Yao, Y.; Xiao, X.; Ge, L.; Sun, C. P., Phys. Rev. A, 92, (2015) · doi:10.1103/PhysRevA.92.022112
[11] Streltsov, A.; Singh, U.; Dhar, H. S.; Bera, M. N.; Adesso, G., Phys. Rev. Lett., 115, (2015) · doi:10.1103/PhysRevLett.115.020403
[12] Streltsov, A.; Chitambar, E.; Rana, S.; Bera, M. N.; Winter, A.; Lewenstein, M., Phys. Rev. Lett., 116, (2016) · doi:10.1103/PhysRevLett.116.240405
[13] Ma, J.; Yadin, B.; Girolami, D.; Vedral, V.; Gu, M., Phys. Rev. Lett., 116, (2016) · doi:10.1103/PhysRevLett.116.160407
[14] Chitambar, E.; Hsieh, M. H., Phys. Rev. Lett., 117, (2016) · doi:10.1103/PhysRevLett.117.020402
[15] Hu, M. L.; Fan, H., Phys. Rev. A, 95, (2017) · doi:10.1103/PhysRevA.95.052106
[16] Streltsov, A.; Rana, S.; Bera, M. N.; Lewenstein, M., Phys. Rev. X, 7, (2017) · doi:10.1103/PhysRevX.7.011024
[17] Yuan, X.; Zhou, H.; Gu, M.; Ma, X., Phys. Rev. A, 97, (2018) · doi:10.1103/PhysRevA.97.012331
[18] Yu, X. D.; Zhang, D. J.; Liu, C. L.; Tong, D. M., Phys. Rev. A, 93, (2016) · doi:10.1103/PhysRevA.93.060303
[19] Yu, X. D.; Zhang, D. J.; Xu, G. F.; Tong, D. M., Phys. Rev. A, 94, (2016) · doi:10.1103/PhysRevA.94.060302
[20] Yadin, B.; Ma, J.; Girolami, D.; Gu, M.; Vedral, V., Phys. Rev. X, 6, (2016) · doi:10.1103/PhysRevX.6.041028
[21] Shi, H. L.; Liu, S. Y.; Wang, X. H.; Yang, W. L.; Yang, Z. Y.; Fan, H., Phys. Rev. A, 95, (2017) · doi:10.1103/PhysRevA.95.032307
[22] Hu, M. L.; Shen, S. Q.; Fan, H., Phys. Rev. A, 96, (2017) · doi:10.1103/PhysRevA.96.052309
[23] Shi, H. L.; Wang, X. H.; Liu, S. Y.; Yang, W. L.; Yang, Z. Y.; Fan, H., Sci. Rep., 7, 14806, (2017) · doi:10.1038/s41598-017-13687-4
[24] Streltsov, A.; Rana, S.; Boes, P.; Eisert, J., Phys. Rev. Lett., 119, (2017) · doi:10.1103/PhysRevLett.119.140402
[25] Zhou, Y.; Zhao, Q.; Yuan, X.; Ma, X., New J. Phys., 19, (2017) · Zbl 1535.81038 · doi:10.1088/1367-2630/aa91fa
[26] Yang, S-r; Yu, C-s, Ann. Phys., 388, 305-314, (2018) · Zbl 1382.81043 · doi:10.1016/j.aop.2017.11.028
[27] Silva, I. A., Phys. Rev. Lett., 117, (2016) · doi:10.1103/PhysRevLett.117.160402
[28] Rab, A. S.; Polino, E.; Man, Z. X.; Ba An, N.; Xia, Y. J.; Spagnolo, N.; Lo Franco, R.; Sciarrino, F., Nat. Commun., 8, 915, (2017) · doi:10.1038/s41467-017-01058-6
[29] Centrone, F.; Barbieri, M.; Serafini, A., (2018)
[30] Mortezapour, A.; Lo Franco, R., (2018)
[31] Mortezapour, A.; Naeimi, G.; Lo Franco, R., (2017)
[32] Streltsov, A.; Adesso, G.; Plenio, M. B., Rev. Mod. Phys., 89, (2017) · doi:10.1103/RevModPhys.89.041003
[33] Hu, M. L.; Hu, X.; Wang, J. C.; Peng, Y.; Zhang, Y. R.; Fan, H., (2017)
[34] Yuan, X.; Zhao, Q.; Girolami, D.; Ma, X., (2016)
[35] Hayashi, M.; Zhu, H., Phys. Rev. A, 97, (2018) · doi:10.1103/PhysRevA.97.012302
[36] Yuan, X.; Bai, G.; Peng, T.; Ma, X., Phys. Rev. A, 96, (2017) · doi:10.1103/PhysRevA.96.032313
[37] Luo, S.; Sun, Y., Phys. Rev. A, 96, (2017) · doi:10.1103/PhysRevA.96.022130
[38] Ma, J.; Yuan, X.; Hakande, A.; Ma, X., (2017)
[39] Rastegin, A. E., Phys. Rev. A, 93, (2016) · doi:10.1103/PhysRevA.93.032136
[40] Zhao, Q.; Liu, Y.; Yuan, X.; Chitambar, E.; Ma, X., Phys. Rev. Lett., 120, (2018) · doi:10.1103/PhysRevLett.120.070403
[41] Chitambar, E.; Gour, G., Phys. Rev. A, 94, (2016) · doi:10.1103/PhysRevA.94.052336
[42] Winter, A.; Yang, D., Phys. Rev. Lett., 116, (2016) · doi:10.1103/PhysRevLett.116.120404
[43] Mller-Lennert, M.; Dupuis, F.; Szehr, O.; Fehr, S.; Tomamichel, M., J. Math. Phys., 54, (2013) · Zbl 1290.81016 · doi:10.1063/1.4838856
[44] Coles, P. J., Phys. Rev. A, 85, (2012) · doi:10.1103/PhysRevA.85.042103
[45] Konig, R.; Renner, R.; Schaffner, C., IEEE Trans. Inf. Theory, 55, 4337-4347, (2009) · Zbl 1367.81028 · doi:10.1109/TIT.2009.2025545
[46] Zhang, H. J.; Chen, B.; Li, M.; Fei, S. M.; Long, G. L., Commun. Theor. Phys., 67, 166, (2017) · Zbl 1358.81052 · doi:10.1088/0253-6102/67/2/166
[47] Tomamichel, M., (2012)
[48] Wang, L.; Renner, R., Phys. Rev. Lett., 108, (2012) · doi:10.1103/PhysRevLett.108.200501
[49] Regula, B.; Fang, K.; Wang, X.; Adesso, G., (2017)
[50] Chitambar, E.; Gour, G., Phys. Rev. Lett., 117, (2016) · doi:10.1103/PhysRevLett.117.030401
[51] Marvian, I.; Spekkens, R. W., Phys. Rev. A, 94, (2016) · doi:10.1103/PhysRevA.94.052324
[52] Buscemi, F.; Datta, N., Phys. Rev. Lett., 106, (2011) · doi:10.1103/PhysRevLett.106.130503
[53] Buscemi, F.; Datta, N., J. Math. Phys., 51, (2010) · Zbl 1314.81034 · doi:10.1063/1.3483717
[54] Devetak, I.; Winter, A., Proc. R. Soc. A, 461, 207-235, (2005) · Zbl 1145.81325 · doi:10.1098/rspa.2004.1372
[55] Renner, R., Int. J. Quantum Inf., 6, 1-27, (2008) · Zbl 1151.81007 · doi:10.1142/S0219749908003256
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.