×

Estimation on geometric measure of quantum coherence. (English) Zbl 1358.81052

Summary: We study the geometric measure of quantum coherence recently proposed in [A. Streltsov et al., Phys. Rev. Lett. 115, No. 2, Article ID 020403 (2015; doi:10.1103/PhysRevLett.115.020403)]. Both lower and upper bounds of this measure are provided. These bounds are shown to be tight for a class of important coherent states – maximally coherent mixed states. The trade-off relation between quantum coherence and mixedness for this measure is also discussed.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P50 Quantum state estimation, approximate cloning

References:

[1] Åberg J. 2014 Phys. Rev. Lett.113 150402
[2] Narasimhachar V. and Gour G. 2015 Nat. Commun.6 7689
[3] Ćwikliński P., Studziński M., Horodecki M. and Oppenheim J. 2015 Phys. Rev. Lett.115 210403
[4] Lostaglio M., Jennings D. and Rudolph T. 2015 Nat. Commun.6 6383
[5] Lostaglio M., Korzekwa K., Jennings D. and Rudolph T. 2015 Phys. Rev.5 021001
[6] Dong D., Zhou B. and Han J.D. 2007 Chin. Sci. Bull.52 2938
[7] Plenio M.B. and Huelga S.F. 2008 New J. Phys.10 113019
[8] Rebentrost P., Mohseni M. and Aspuru-Guzik A. 2009 J. Phys. Chem. B 113 9942
[9] Lloyd S. 2011 J. Phys. Conf. Ser.302 012037
[10] Li C.M., Lambert N., Chen Y.N., Chen G.Y. and Nori F. 2012 Sci. Rep.2 885
[11] Huelga S. and Plenio M. 2013 Contemp. Phys.54 181
[12] Levi F. and Mintert F. 2014 New J. Phys.16 033007
[13] Vazquez H., Skouta R., Schneebeli S. et al 2012 Nat. Nanotechnol.7 663
[14] Karlström O, Linke H., Karlstrom G. and Wacker A. 2011 Phys. Rev. B 84 113415
[15] Glauber R.J. 1963 Phys. Rev.131 2766
[16] Sudarshan E.C.G. 1963 Phys. Rev. Lett.10 277
[17] Chen L.Z., Huang Y.G., Jin C.J. et al 2012 Sci. China-Phys. Mech. Astron.55 2300
[18] Baumgratz T., Cramer M. and Plenio M.B. 2014 Phys. Rev. Lett.113 140401
[19] Horodecki R., Horodecki P. and Horodecki M. 2009 Rev. Mod. Phys.81 865
[20] Vedral V., Plenio M.B., Rippin M.A. and Knight P.L. 1997 Phys. Rev. Lett.78 2275
[21] Vedral V. and Plenio M.B. 1998 Phys. Rev. A 57 1619
[22] Plenio M.B. and Virmani S. 2007 Quant. Inf. Comput.7 1
[23] Girolami D. 2014 Phys. Rev. Lett.113 170401
[24] Shao L.H., Xi Z., Fan H. and Li Y. 2015 Phys. Rev. A 91 042120
[25] Rana S., Parashar P. and Lewenstein M. 2016 Phys. Rev. A 93 012110
[26] Streltsov A., Singh U., Dhar H.S., Bera M.N. and Adesso G. 2015 Phys. Rev. Lett.115 020403
[27] Streltsov A., Kampermann H. and Bruß D. 2010 New J. Phys.12 123004
[28] Singh U., Bera M.N., Dhar H.S. and Pati A.K. 2015 Phys. Rev. A 91 052115
[29] Miszczak J.A., Puchala Z., Horodecki P., Uhlmann A. and Zyczkowski K. 2009 Quantum Inf. Comput.9 103
[30] Chen Z., Ma Z., Zhang F. et al 2011 Cent. Eur. J 9 1036
[31] Wu Z., Zhu C. and Zhang X. 2013 Cent. Eur. J 11 317
[32] Wu Z., Zhu C. and Zhang X. 2014 Commun. Theor. Phys.61 37
[33] Wu Z., Zhu C., Luo S. and Wang J. 2015 Phys. Lett. A 379 2694
[34] Peters N.A., Wei T.C. and Kwiat P.G. 2004 Phys. Rev. A 70 052309
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.