×

Models of anisotropic self-gravitating source in Einstein-Gauss-Bonnet gravity. (English) Zbl 1406.83017

Summary: In this paper, we have studied gravitational collapse and expansion of nonstatic anisotropic fluid in \(5 D\) Einstein-Gauss-Bonnet gravity. For this purpose, the field equations have been modeled and evaluated for the given source and geometry. The two metric functions have been expressed in terms of parametric form of third metric function. We have examined the range of parameter \(\beta\) (appearing in the form of metric functions) for which \(\Theta\), the expansion scalar, becoming positive/negative leads to expansion/collapse of the source. The trapped surface condition has been explored by using definition of Misner-Sharp mass and auxiliary solutions. The auxiliary solutions of the field equations involve a single function that generates two types of anisotropic solutions. Each solution can be represented in term of arbitrary function of time; this function has been chosen arbitrarily to fit the different astrophysical time profiles. The existing solutions forecast gravitational expansion and collapse depending on the choice of initial data. In this case, wall to wall collapse of spherical source has been investigated. The dynamics of the spherical source have been observed graphically with the effects of Gauss-Bonnet coupling term \(\alpha\) in the case of collapse and expansion. The energy conditions are satisfied for the specific values of parameters in both solutions; this implies that the solutions are physically acceptable.

MSC:

83E15 Kaluza-Klein and other higher-dimensional theories
85A15 Galactic and stellar structure

References:

[1] Kaluza, T., On the Unification Problem in Physics, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), pp. 966-972, 1921 · JFM 48.1032.03
[2] Klein, O., Quantum theory and five-dimensional theory of relativity, Zeitschrift für Physik, 37, 895 (1926) · JFM 52.0970.09
[3] Klein, O., The atomicity of electricity as a quantum theory law, Nature, 118, 2971, 516 (1926)
[4] Witten, E., Search for a realistic Kaluza-Klein theory, Nuclear Physics B, 186, 412 (1981) · Zbl 1156.83330 · doi:10.1016/0550-3213(81)90021-3
[5] Green, M. B.; Schward, J. H., Anomaly cancellations in supersymmetric \(D =10\) gauge theory and superstring theory, Physics Letters, 149B, 117 (1984)
[6] Gross, D. J.; Harvey, J. A.; Martinec, E.; Rohm, R., Heterotic string, Physical Review Letters, 54, 6, 502-505 (1985) · doi:10.1103/PhysRevLett.54.502
[7] Zumino, B., Gravity theories in more than four dimensions, Physics Reports, 137, 1, 109-114 (1986) · doi:10.1016/0370-1573(86)90076-1
[8] Boulware, D. G.; Deser, S., String-generated gravity models, Physical Review Letters, 55, 1039 (1985) · doi:10.1103/PhysRevLett.55.1039
[9] Zwiebach, B., Berkeley Preprint UCB.PTH-85/10
[10] Pedro, V. P. C.; Carlos, A. R. H.; Burkhard, K.; Jutta, K.; Eugen, R., Shadows of Einstein-dilaton-Gauss-Bonnet black holes, arXiv: 1701.00079v2 [gr-qc] · Zbl 1370.83044
[11] Abbas, G.; Kanwal, A.; Zubair, M., Anisotropic compact stars in \(f(T)\) gravity, Astrophysics and Space Science, 357, 2, article 109 (2015) · doi:10.1007/s10509-015-2337-0
[12] Abbas, G.; Zubair, M., Dynamics of anisotropic collapsing spheres in Einstein Gauss-Bonnet gravity, Modern Physics Letters A, 30, 8 (2015) · Zbl 1310.83033 · doi:10.1142/S0217732315500388
[13] Gross, D. J.; Sloan, J. H., The quartic effective action for the heterotic string, Nuclear Physics B, 291, 41-89 (1987)
[14] Bento, M. C.; Bertolami, O., Maximally symmetric cosmological solutions of higher-curvature string effective theories with dilatons, Physics Letters B, 368, 198 (1996)
[15] Dadhich, N.; Molina, A.; Khugaev, A., Uniform density static fluid sphere in Einstein-Gauss-Bonnet gravity and its universality, Physical Review D: Particles, Fields, Gravitation and Cosmology, 81, 10 (2010) · doi:10.1103/PhysRevD.81.104026
[16] Antoniadis, I.; Rizos, J.; Tamvakis, K., Singularity-free cosmological solutions of the superstring effective action, Nuclear Physics B, 415, 497 (1994) · doi:10.1016/0550-3213(94)90120-1
[17] Kanti, P.; Rizos, J.; Tamvakis, K., Singularity-free cosmological solutions in quadratic gravity, Physical Review D: Particles, Fields, Gravitation and Cosmology, 59, 8 (1999) · doi:10.1103/physrevd.59.083512
[18] Kanti, P.; Mavromatos, N. E.; Rizos, J.; Tamvakis, K.; Winstanley, E., Dilatonic black holes in higher curvature string gravity, Physical Review D: Particles, Fields, Gravitation and Cosmology, 54, 8, 5049-5058 (1996) · doi:10.1103/PhysRevD.54.5049
[19] Kanti, P.; Mavromatos, N. E.; Rizos, J.; Tamvakis, K.; Winstanley, E., Dilatonic black holes in higher curvature string gravity. II. Linear stability, Physical Review D: Particles, Fields, Gravitation and Cosmology, 57, 10, 6255-6264 (1998) · doi:10.1103/PhysRevD.57.6255
[20] Torii, T.; Yajima, H.; Maeda, K. I.; Phy., Dilatonic black holes with a Gauss-Bonnet term, Physical Review D, 55, 739 (1997)
[21] Tangherlini, F. R., Schwarzschild field in n dimensions and the dimensionality of space problem, Il Nuovo Cimento, 27, 3, 636-651 (1963) · Zbl 0114.21302 · doi:10.1007/BF02784569
[22] Myers, R. C.; Perry, M. J., Black holes in higher-dimensional space-times, Annals of Physics, 172, 2, 304-347 (1986) · Zbl 0601.53081 · doi:10.1016/0003-4916(86)90186-7
[23] Wheeler, J. T., Symmetric solutions to the Gauss-Bonnet extended Einstein equations, Nuclear Physics B, 268, 737 (1986)
[24] Torii, T.; Maeda, H., Spacetime structure of static solutions in Gauss-Bonnet gravity: Neutral case, Physical Review D, 71 (2005) · doi:10.1103/physrevd.71.011901
[25] Myers, R. C.; Simon, J. Z., Black-hole thermodynamics in Lovelock gravity, Physical Review D: Particles, Fields, Gravitation and Cosmology, 38 (1988)
[26] Cai, R. G., Gauss-Bonnet black holes in AdS spaces, Physical Review D: Particles, Fields, Gravitation and Cosmology, 65 (2002)
[27] Cai, R. G.; Guo, Q., Gauss-Bonnet black holes in dS spaces, Physical Review D: Particles, Fields, Gravitation and Cosmology, 69 (2004) · Zbl 1405.83025
[28] Kobayashi, T., A Vaidya-type radiating solution in Einstein-Gauss-Bonnet gravity and its application to braneworld, General Relativity and Gravitation, 37, 1869 (2005) · Zbl 1082.83030
[29] Maeda, H., Effects of Gauss-Bonnet term on the final fate of gravitational collapse, Classical and Quantum Gravity, 23, 6, 2155-2169 (2006) · Zbl 1091.83032 · doi:10.1088/0264-9381/23/6/016
[30] Ma, E., Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Physical Review D: Particles, Fields, Gravitation and Cosmology, 73 (2006) · doi:10.1103/PhysRevD.73.077301
[31] Dominguez, A. E.; Gallo, E., Radiating black hole solutions in Einstein-Gauss-Bonnet gravity, Physical Review D, 73 (2006)
[32] Ghosh, S. G.; Deshkar, D. W., Horizons of radiating black holes in Einstein-Gauss-Bonnet gravity, Physical Review D: Particles, Fields, Gravitation and Cosmology, 77 (2008)
[33] Hawking, S. W.; Ellis, G. F. R., The Large Scale Structure of Space-Time (1979), London, UK: Cambridge University Press, London, UK
[34] Herrera, L.; Santos, N. O.; Le Denmat, G., Dynamical instability for non-adiabatic spherical collapse, MNRAS, 237, 257 (1989) · Zbl 0668.76158
[35] Misner, C. W.; Sharp, D. H., Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Physical Review A: Atomic, Molecular and Optical Physics, 136, 2, B571-B576 (1964) · Zbl 0129.41102 · doi:10.1103/PhysRev.136.B571
[36] Misner, C. W.; Sharp, D., Relativistic equations for spherical gravitational collapse with escaping neutrinos, Physical Review Journals Archive, 137, 1360 (1965) · Zbl 0127.18405
[37] Herrera, L.; Santos, N. O., Local anisotropy in self-gravitating systems, Physics Reports, 286, 2, 53-130 (1997) · doi:10.1016/s0370-1573(96)00042-7
[38] Herrera, L.; Di Prisco, A.; Hernandez-Pastora, J. L.; Santo, N. O., On the role of density inhomogeneity and local anisotropy in the fate of spherical collapse, Physics Letter A, 237, 113 (1998)
[39] Herrera, L.; Santos, N. O., Dynamics of dissipative gravitational collapse, Physical Review D: Particles, Fields, Gravitation and Cosmology, 70 (2004)
[40] Herrera, L.; Di Prisco, A.; Ospino, J., Cylindrically symmetric relativistic fluids: a study based on structure scalars, General Relativity and Gravitation, 44, 10, 2645-2667 (2012) · Zbl 1255.83035 · doi:10.1007/s10714-012-1422-8
[41] Herrera, L., The inertia of heat and its role in the dynamics of dissipative collapse, International Journal of Modern Physics D, 15, 1659 (2006) · Zbl 1112.83038
[42] Herrera, L.; Santos, N. O.; Wang, A., Shearing expansion-free spherical anisotropic fluid evolution, Physical Review D, 78 (2008)
[43] Abbas, G., Phantom energy accretion onto a black hole in Horava Lifshitz gravity, Science China Physics, Mechanics and Astronomy, 57, 4, 604-607 (2014)
[44] Shah, S. M.; Abbas, G., Dynamics of charged bulk viscous collapsing cylindrical source with heat flux, The European Physical Journal C, 77, 251 (2017) · doi:10.1140/epjc/s10052-017-4813-x
[45] Abbas, G., Collapse and expansion of anisotropic plane symmetric source, Astrophysics and Space Science, 350, 307 (2014) · doi:10.1007/s10509-013-1776-8
[46] Abbas, G., Cardy-verlinde formula of noncommutative schwarzschild black hole, Advances in High Energy Physics, 2014 (2014) · Zbl 1427.83032
[47] Abbas, G., Effects of electromagnetic field on the collapse and expansion of anisotropic gravitating source, Astrophysics and Space Science, 352, 955 (2014)
[48] Abbas, G.; Sabiullah, U., Geodesic study of regular Hayward black hole, Astrophysics and Space Science, 352, 769 (2014)
[49] Zubair, M.; Azmat, H.; Noureen, I., Dynamical analysis of cylindrically symmetric anisotropic sources in f(R, T) gravity, The European Physical Journal C, 77, 3 (2017) · doi:10.1140/epjc/s10052-017-4723-y
[50] Zhou, K.; Yang, Z-Y.; Zou, D.-C.; Yue, R-H., Spherically symmetric gravitational collapse of a dust cloud in third-order lovelock gravity, International Journal of Modern Physics D, 22, 2317 (2011) · Zbl 1266.83053
[51] Zhou, K.; Yang, Z.; Zou, D.; Yue, R., Spherically symmetric gravitational collapse of a dust cloud in einstein-gauss-bonnet gravity, Modern Physics Letters A, 26, 28, 2135-2147 (2011) · Zbl 1274.83104 · doi:10.1142/S0217732311036449
[52] Yue, R.-H.; Zou, D.-C.; Yu, T.-Y.; Yang, Z.-Y., A new metric for rotating black holes in Gauss—Bonnet gravity, Chinese Physics B, 20 (2011)
[53] Zhou, K.; Yang, Z.-Y.; Zou, D.-C.; Yue, R.-H., Static spherically symmetric star in Gauss—Bonnet gravity, Chinese Physics B, 21 (2012)
[54] Zou, D.-C.; Yang, Z.-Y.; Yue, R.-H.; Yu, T.-Y., A new metric for rotating charged Gauss—Bonnet black holes in AdS space, Chinese Physics B, 20 (2011)
[55] Yue, R.; Zou, D.; Yu, T.; Li, P.; Yang, Z., Slowly rotating charged black holes in anti-de Sitter third order Lovelock gravity, General Relativity and Gravitation, 43, 8, 2103-2114 (2011) · Zbl 1222.83151 · doi:10.1007/s10714-011-1164-z
[56] Zou, D.-C.; Yang, Z.-Y.; Yue, R.-H., Thermodynamics of slowly rotating charged black holes in anti-de sitter Einstein—Gauss—Bonnet gravity, Chinese Physics Letters, 28 (2011)
[57] Zou, D.; Yang, Z.; Yue, R.; Li, P., Thermodynamics of gauss-bonnet-born-infeld black holes in ads space, Modern Physics Letters A, 26, 07, 515-529 (2011) · Zbl 1209.83031
[58] Gou, L.-D.; Xue, K.; Wang, G.-C., Thermodynamics of third order lovelock anti-de sitter black holes revisited, Communications in Theoretical Physics, 55, 499 (2011) · Zbl 1264.83032
[59] Chakraborty, S., An alternative f(R, T) gravity theory and the dark energy problem, General Relativity and Gravitation, 45, 2039 (2013) · Zbl 1277.83076
[60] Abbas, G.; Ahmed, R., Models of Collapsing and Expanding Anisotropic Gravitating Source in f(R,T) Theory of Gravity, European Physical Journal C, 77, 441 (2017)
[61] Sharif, M.; Siddiqa, A., Study of homogeneous and isotropic universe in \(f(R, T^\varphi)\) gravity, Advances in Higah Energy Physics, 2018 (2018) · Zbl 1403.83063
[62] Oppenheimer, J. R.; Snyder, H., On continued gravitational contraction, Physical Review A: Atomic, Molecular and Optical Physics, 56, 5, 455-459 (1939) · Zbl 0022.28104 · doi:10.1103/PhysRev.56.455
[63] Markovic, D.; Shapiro, S. L., Gravitational collapse with a cosmological constant, Physical Review D, 61 (2000)
[64] Lake, K., Gravitational collapse of dust with a cosmological constant, Physical Review D: Particles, Fields, Gravitation and Cosmology, 62 (2000)
[65] Sharif, M.; Abbas, G., Gravitational charged perfect fluid collapse in Friedmann universe models, Astrophysics and Space Science, 327, 285-291 (2010) · Zbl 1195.83067
[66] Sharif, M.; Ahmad, Z., Gravitational perfect fluid collapse with cosmological constant, Modern Physics Letters A, 22, 20, 1493-1502 (2007) · Zbl 1140.83390 · doi:10.1142/S0217732307021834
[67] Sharif, M.; Ahmed, Z., Addendum: “gravitational perfect fluid collapse with cosmological constant”, Modern Physics Letters A, 22, 38, 2947-2948 (2007) · doi:10.1142/S0217732307025972
[68] Sharif, M.; Ahmad, Z., Five-Dimensional Perfect Fluid Collapse with the Cosmological Constant, Journal of the Korean Physical Society, 52, 4, 980 (2008)
[69] Sharif, M.; Ahamd, Z., Higher dimensional perfect fluid collapse with cosmological constant, Acta Physica Polonica B, 39 (2008) · Zbl 1371.83174
[70] Sharif, M.; Abbas, G., Effects of the Electromagnetic Field on Five-dimensional Gravitational Collapse, Journal of the Korean Physical Society, 56, 529 (2010)
[71] Abbas, G.; Zubair, M., Dynamics of anisotropic collapsing spheres in Einstein Gauss-Bonnet gravity, Arxiv: 1504.07937v1 · Zbl 1310.83033
[72] Ida, D.; Nakao, K. I., Isoperimetric inequality for higher-dimensional black holes, Physical Review D: Particles, Fields, Gravitation and Cosmology, 66 (2002)
[73] Jhingan, S.; Ghosh, S. G., Inhomogeneous dust collapse in 5D Einstein-Gauss-Bonnet gravity, Physical Review D: Particles, Fields, Gravitation and Cosmology, 81 (2010)
[74] Maharaj, S. D.; Chilambwe, B.; Hansraj, S., Exact barotropic distributions in Einstein-Gauss-Bonnet gravity, Physical Review D: Particles, Fields, Gravitation and Cosmology, 91, 8 (2015) · doi:10.1103/PhysRevD.91.084049
[75] Abbas, G.; Tahir, M., Gravitational perfect fluid collapse in Gauss-Bonnet gravity, The European Physical Journal C, 537, 77 (2017)
[76] Banerjee, A.; Sil, A.; Chatterjee, S., Gravitational collapse of an inhomogeneous dust sphere in higher dimensional spacetime, Astrophysical Journal, 422, 681-687 (1994)
[77] Ghosh, S. G.; Banerjee, A., Non-marginally bound inhomogeneous dust collapse in higher dimensional space-time, International Journal of Modern Physics D, 12, 639 (2003)
[78] Ghosh, S. G.; Deshkar, D. W.; Saste, N. N., Five-dimensional dust collapse with cosmological constant, International Journal of Modern Physics D, 16, 1531 (2007) · Zbl 1115.83324
[79] Glass, E. N., Generating anisotropic collapse and expansion solutions of Einstein’s equations, General Relativity and Gravitation, 45, 12, 2661-2670 (2013) · Zbl 1283.83011 · doi:10.1007/s10714-013-1609-7
[80] Barrow, J. D.; Maartens, R., Anisotropic stresses in inhomogeneous universes, Physical Review D: Particles, Fields, Gravitation and Cosmology, 59 (1998)
[81] Mahmood, T.; Shah, S. M.; Abbas, G., Gravitational collapse and expansion of charged anisotropic cylindrical source, Astrophysics and Space Science, 6, 2234 (2015)
[82] Schwarz, J. J., Covariant field equations of chiral \(N = 2 D = 10\) supergravity, Nuclear Physics B, 226, 269 (1983)
[83] Collins, C. B., Global structure of the “Kantowski-Sachs” cosmological models, Journal of Mathematical Physics, 18, 8, 2216 (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.