×

Dynamics of anisotropic collapsing spheres in Einstein Gauss-Bonnet gravity. (English) Zbl 1310.83033

Summary: This paper is devoted to investigate the dynamics of the self-gravitating adiabatic and anisotropic source in 5D Einstein Gauss-Bonnet gravity. To this end, the source has been taken as Tolman-Bondi model which preserve inhomogeneity in nature. The field equations, Misner-Sharp mass and dynamical equations have formulated in Einstein Gauss-Bonnet gravity in 5D. The junction conditions have been explored between the anisotropic source and vacuum solution in Gauss-Bonnet gravity in detail. The Misner and Sharp approach has been applied to define the proper time and radial derivatives. Further, these helps to formulate general dynamical equations. The equations show that the mass of the collapsing system increases with the same amount as the effective radial pressure increases. The dynamical system preserves retardation which implies that system under-consideration goes to gravitational collapse.

MSC:

83E15 Kaluza-Klein and other higher-dimensional theories
85A15 Galactic and stellar structure

References:

[1] DOI: 10.1086/147938 · Zbl 0151.47102 · doi:10.1086/147938
[2] DOI: 10.1093/mnras/237.1.257 · Zbl 0668.76158 · doi:10.1093/mnras/237.1.257
[3] DOI: 10.1016/S0370-1573(96)00042-7 · doi:10.1016/S0370-1573(96)00042-7
[4] DOI: 10.1007/s10714-012-1331-x · Zbl 1241.83023 · doi:10.1007/s10714-012-1331-x
[5] DOI: 10.1103/PhysRevD.79.087505 · doi:10.1103/PhysRevD.79.087505
[6] DOI: 10.1103/PhysRevD.78.084026 · doi:10.1103/PhysRevD.78.084026
[7] DOI: 10.1103/PhysRevD.70.084004 · doi:10.1103/PhysRevD.70.084004
[8] DOI: 10.1051/0004-6361:20000525 · doi:10.1051/0004-6361:20000525
[9] DOI: 10.1142/S0218271809014285 · Zbl 1163.83356 · doi:10.1142/S0218271809014285
[10] DOI: 10.1142/S0218271806009753 · Zbl 1112.83038 · doi:10.1142/S0218271806009753
[11] DOI: 10.1088/1674-1056/22/5/050401 · doi:10.1088/1674-1056/22/5/050401
[12] DOI: 10.1007/s10714-012-1333-8 · Zbl 1241.83057 · doi:10.1007/s10714-012-1333-8
[13] DOI: 10.1093/mnras/stt112 · doi:10.1093/mnras/stt112
[14] DOI: 10.1140/epjc/s10052-013-2633-1 · doi:10.1140/epjc/s10052-013-2633-1
[15] DOI: 10.1093/mnras/stu533 · doi:10.1093/mnras/stu533
[16] DOI: 10.1088/1475-7516/2013/11/014 · doi:10.1088/1475-7516/2013/11/014
[17] DOI: 10.1016/j.astropartphys.2014.03.003 · doi:10.1016/j.astropartphys.2014.03.003
[18] DOI: 10.1103/PhysRevLett.55.2656 · doi:10.1103/PhysRevLett.55.2656
[19] DOI: 10.1007/BF02784569 · Zbl 0114.21302 · doi:10.1007/BF02784569
[20] DOI: 10.1016/0003-4916(86)90186-7 · Zbl 0601.53081 · doi:10.1016/0003-4916(86)90186-7
[21] DOI: 10.1016/0550-3213(86)90268-3 · doi:10.1016/0550-3213(86)90268-3
[22] DOI: 10.1103/PhysRevD.65.084014 · doi:10.1103/PhysRevD.65.084014
[23] DOI: 10.1007/s10714-005-0192-y · Zbl 1082.83030 · doi:10.1007/s10714-005-0192-y
[24] DOI: 10.1088/0264-9381/23/6/016 · Zbl 1091.83032 · doi:10.1088/0264-9381/23/6/016
[25] Jhingan S., Phys. Rev. D 65 pp 084014– (2010)
[26] DOI: 10.1103/PhysRevD.77.064031 · doi:10.1103/PhysRevD.77.064031
[27] DOI: 10.1103/PhysRev.136.B571 · doi:10.1103/PhysRev.136.B571
[28] Darmois G., Memorial des Sciences Mathematiques (1927)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.