×

The axiomatic rank of Levi classes. (English. Russian original) Zbl 1406.20035

Algebra Logic 57, No. 5, 381-391 (2018); translation from Algebra Logika 57, No. 5, 587-600 (2018).
Summary: A Levi class \(L(\mathcal{M})\) generated by a class \(\mathcal{M}\) of groups is a class of all groups in which the normal closure of each element belongs to \(\mathcal{M}\). It is stated that there exist finite groups \(G\) such that a Levi class \(L(qG)\), where \(qG\) is a quasivariety generated by a group \(G\), has infinite axiomatic rank. This is a solution for [V. D. Mazurov (ed.) and E. I. Khukhro (ed.), The Kourovka notebook. Unsolved problems in group theory. 19th edition. Novosibirsk: Institute of Mathematics, Russian Academy of Sciences, Siberian Div. (2018), Quest. 15.36]. Moreover, it is proved that a Levi class \(L(\mathcal{M})\), where \(\mathcal{M}\) is a quasivariety generated by a relatively free 2-step nilpotent group of exponent \(p^s\) with a commutator subgroup of order \(p\), \(p\) is a prime, \(p\neq 2\), \(s\geq2\), is finitely axiomatizable.

MSC:

20E10 Quasivarieties and varieties of groups
08C15 Quasivarieties
20F18 Nilpotent groups
Full Text: DOI

References:

[1] F. W. Levi, “Groups in which the commutator operation satisfies certain algebraical conditions,” J. Indian Math. Soc., New Ser., 6, 87-97 (1942). · Zbl 0061.02606
[2] A. I. Budkin, “Levi quasivarieties,” Sib. Math. J., 40, No. 2, 225-228 (1999). · Zbl 0930.20028
[3] A. I. Budkin, “Levi classes generated by nilpotent groups,” Algebra and Logic, 39, No. 6, 363-369 (2000). · Zbl 0973.20020 · doi:10.1023/A:1010224301576
[4] A. I. Budkin and L. V. Taranina, “On Levi quasivarieties generated by nilpotent groups,” Sib. Math. J., 41, No. 2, 218-223 (2000). · Zbl 0956.20015 · doi:10.1007/BF02674590
[5] V. V. Lodeishchikova, “On Levi quasivarieties generated by nilpotent groups,” Izv. Altai State Univ., No. 1(61), 26-29 (2009). · Zbl 1374.20039
[6] V. V. Lodeishchikova, “The Levi classes generated by nilpotent groups,” Sib. Math. J., 51, No. 6, 1075-1080 (2010). · Zbl 1228.20021 · doi:10.1007/s11202-010-0105-5
[7] V. V. Lodeishchikova, “Levi quasivarieties of exponent <Emphasis Type=”Italic“>p <Emphasis Type=”Italic“>s,” Algebra and Logic, 50, No. 1, 17-28 (2011). · Zbl 1266.20040
[8] Unsolved Problems in Group Theory, The Kourovka Notebook, No. 19, Institute of Mathematics SO RAN, Novosibirsk (2018); http://www.math.nsc.ru/∼alglog/19tkt.pdf. · Zbl 1428.20020
[9] M. I. Kargapolov and Yu. I. Merzlyakov, Fundamentals of Group Theory [in Russian], 4th edn., Nauka, Moscow (1996). · Zbl 0884.20001
[10] A. I. Budkin, Quasivarieties of Groups [in Russian], Altai State Univ., Barnaul (2002). · Zbl 0905.20016
[11] V. A. Gorbunov, Algebraic Theory of Quasivarieties, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1999). · Zbl 0986.08002
[12] A. I. Budkin and V. A. Gorbunov, “Quasivarieties of algebraic systems,” Algebra and Logic, 14, No. 2, 73-84 (1975). · Zbl 0328.08006 · doi:10.1007/BF01668420
[13] A. Yu. Ol’shanskii, “Conditional identities in finite groups,” Sib. Math. J., 15, No. 6, 1000-1003 (1974). · Zbl 0307.20017 · doi:10.1007/BF00966568
[14] A. N. Fyodorov, “Subquasivarieties of nilpotent minimal non-Abelian group varieties,” Sib. Math. J., 21, No. 6, 840-850 (1980). · Zbl 0463.20024 · doi:10.1007/BF00968471
[15] H. Neumann, Varieties of Groups, Springer, Berlin (1967). · Zbl 0149.26704 · doi:10.1007/978-3-642-88599-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.