×

On Levi quasivarieties generated by nilpotent groups. (English. Russian original) Zbl 0956.20015

Sib. Math. J. 41, No. 2, 218-223 (2000); translation from Sib. Mat. Zh. 41, No. 2, 270-277 (2000).
Let \(\mathcal M\) be a class of groups. By \(L({\mathcal M})\) we denote the class of groups \(G\) such that, for every \(x\in G\), the normal closure \((x)^G\) belongs to \(\mathcal M\). This yields the notion of the Levi class generated by a class of groups. By \(q{\mathcal M}\) the authors denote the quasivariety generated by \(\mathcal M\). The authors prove the following theorem: Let \(\mathcal K\) be an arbitrary set of nilpotent groups of class \(2\) without elements of order \(2\). Suppose that, in every group in \(\mathcal K\), the centralizer of each element outside the center of the group is an Abelian group. Then, for \({\mathcal M}=q{\mathcal K}\), we have \(L({\mathcal M})\subseteq{\mathcal N}_3\).

MSC:

20E10 Quasivarieties and varieties of groups
20F18 Nilpotent groups
20F45 Engel conditions
08C15 Quasivarieties

References:

[1] Kappe L. C., ”On Levi-formations,” Arch. Math.,23, 561–572 (1972). · Zbl 0252.20030 · doi:10.1007/BF01304934
[2] Levi F. W., ”Groups in which the commutator operation satisfies certain algebraic conditions,” J. Indian Math. Soc.,6, 87–97 (1942). · Zbl 0061.02606
[3] Morse R. F., ”Levi-properties generated by varieties,” Contemp. Math.,169, 467–474 (1994). · Zbl 0818.20023 · doi:10.1090/conm/169/01675
[4] Budkin A. I., ”Levi quasivarieties,” Sibirsk. Mat. Zh.,40, No. 2, 266–270 (1999). · Zbl 0930.20028
[5] Kargapolov M. I. andMerzlyakov Yu. I., Fundamentals of the Theory of Groups [in Russian], Nauka, Moscow (1982).
[6] Kappe L. C. andKappe W. P., ”On three-Engel groups,” Bull. Austral. Math. Soc.,7, 391–405 (1972). · Zbl 0238.20044 · doi:10.1017/S000497270004524X
[7] Kappe L. C. andMorse R. F., ”Levi-properties in metabelian groups,” Contemp. Math.,109, 59–72 (1990). · Zbl 0712.20020 · doi:10.1090/conm/109/1076377
[8] Kappe L. C. andKappe W. P., ”Metabelian Levi-formations,” Arch. Math.,25, 454–462 (1974). · Zbl 0306.20025 · doi:10.1007/BF01238705
[9] Weston K. W., ”ZA-groups which satisfy themth Engel condition,” Illinois J. Math.,8, 458–472 (1964). · Zbl 0126.04703
[10] Budkin A. I. andGorbunov V. A., ”To the theory of quasivarieties of groups,” Algebra i Logika,14, No. 2, 123–142 (1975). · Zbl 0328.08006 · doi:10.1007/BF01668420
[11] Malcev A. I., Algebraic Systems [in Russian], Nauka, Moscow (1970). · JFM 62.1103.02
[12] Heineken H., ”Engelsche elemente der Länge drei,” Illinois J. Math.,5, 467–474 (1961). · Zbl 0232.20073
[13] Hall M., The Theory of Groups [Russian translation], Izdat. Inostr. Lit., Moscow (1962). · Zbl 0115.23001
[14] Neumann H., Varieties of Groups [Russian translation], Mir, Moscow (1969).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.