×

Isoperimetric functional inequalities via the maximum principle: the exterior differential systems approach. (English) Zbl 1405.42023

Baranov, Anton (ed.) et al., 50 years with Hardy spaces. A tribute to Victor Havin. Cham: Birkhäuser (ISBN 978-3-319-59077-6/hbk; 978-3-319-59078-3/ebook). Operator Theory: Advances and Applications 261, 281-305 (2018).
Summary: Our goal in this note is to give a unified approach to the solutions of a class of isoperimetric problems by relating them to the exterior differential systems studied by R. L. Bryant and P. A. Griffiths [Duke Math. J. 78, No. 3, 531–676 (1995; Zbl 0853.58005); J. Am. Math. Soc. 8, No. 3, 507–596 (1995; Zbl 0845.58004)].
For the entire collection see [Zbl 1393.30002].

MathOverflow Questions:

Monge–Ampère with drift

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B35 Function spaces arising in harmonic analysis
47A30 Norms (inequalities, more than one norm, etc.) of linear operators

Software:

MathOverflow

References:

[1] F. Barthe, B. Maurey, Some remarks on isoperimetry of Gaussian type. Ann. Inst. H. Poincar´e Probab. Statist., 36 (4):419-434, 2000 · Zbl 0964.60018
[2] D. Bakry, M. Emery, Hypercontractivit´e de semi-groups de diffusion, C. R. Acad. Sci. Paris S´er I Math. 299, 775-778 (1984). · Zbl 0563.60068
[3] D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften 348. Springer, Cham. · Zbl 1376.60002
[4] D. Bakry, M. Ledoux, L´evy-Gromov’s isoperimetric inequality for an infinity dimensional diffusion generator. Invent. math. 123, 259-281 (1996) · Zbl 0855.58011
[5] W. Beckner, A generalized Poincar´e inequality for Gaussian measures, Proceedings of the American Mathematical Society 105, no. 2, 397-400 (1989). · Zbl 0677.42020
[6] S.G. Bobkov, Isoperimetric and analytic inequalities for log-concave probability measures, Ann. Probab. 27, no. 4, 1903-1921 (1999). · Zbl 0964.60013
[7] S.G. Bobkov, An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space The Annals of Probability 25, no. 1, 206-214 (1997). · Zbl 0883.60031
[8] S.G. Bobkov, M. Ledoux From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities Geom. Funct. Anal., 10(5) (2000), 1028-1052. · Zbl 0969.26019
[9] A. Bonami, Ensembles Λ(p) dans le dual de D∞. Ann. Inst. Fourier, 18 (2) 193-204 (1968). · Zbl 0175.44801
[10] A. Bonami, ´Etude des coefficients de Fourier des fonctions de Lp(G). Ann. Inst. Fourier, 20: 335-402 (1970). · Zbl 0195.42501
[11] H.J. Brascamp, E.H. Lieb, On extensions of the Brunn-Minkowski and Pr´ekopa- Leindler theorems, including inequalities for log-concave functions, and with an application to the diffusion equation, J. Funct. Anal. 22, 366-389 (1976). · Zbl 0334.26009
[12] R. Bryant et al., Exterior differential systems. · Zbl 0516.58003
[13] R. Bryant, P. Griffiths Characteristic cohomology of differential systems II: Conservation laws for a class of parabolic equations, Duke Math. J. 78, no. 3 (1995), 531-676. · Zbl 0853.58005
[14] R. Bryant, P. Griffiths, Characteristic cohomology of differential systems I: General theory, J. Amer. Math. Soc. 8 (1995), 507-596. · Zbl 0845.58004
[15] R. Bryant, Monge-Amp‘ere with drift, URL (version 2015-06-29): http://mathoverflow.net/q/210127
[16] L. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys. 214, (2000), 547-563. · Zbl 0978.60107
[17] E.A. Carlen, D. Cordero-Erausquin, E.H. Lieb, Asymmetric covariance estimates of Brascamp-Lieb type and related inequalities for log-concave measures, Ann. Inst. Henri Poincar´e Probab. Stat. 49 (2013), 1-12. · Zbl 1270.26016
[18] D. Chafai, On Φ-entropies and Φ-Sobolev inequalities, preprint 2002. · Zbl 1079.26009
[19] D. Cordero-Erausquin, M. Fradelizi, B. Maurey, The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, J. Funct. Anal., 214 (2004), no. 2, 410-427. · Zbl 1073.60042
[20] L. Gross, Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975), no. 4, 1061- 1083. · Zbl 0318.46049
[21] C. Houdr´e, A. Kagan, Variance inequalities for functions of Gaussian variables, J. Theoret. Probab. 8 (1995), no. 1, 23-30 · Zbl 0815.60018
[22] Y. Hu, A unified approach to several inequalities for Gaussian and diffusion measures. S´eminare de Probabilit´es XXXIV. Lecture Notes in Math. 1729, 329-335 (2000). Springer. · Zbl 0957.60091
[23] P. Ivanisvili, Geometric aspects of exact solutions of Bellman equations of harmonic analysis problems, PhD thesis, 2015.
[24] P. Ivanisvili, A. Volberg, Improving Beckner’s bound via Hermite polynomials, preprint, arXiv:1606.08500. · Zbl 1364.42029
[25] P. Ivanisvili, A. Volberg, Bellman partial differential equation and the hill property for classical isoperimetric problems, preprint (2015) arXiv:1506.03409, pp. 1-30.
[26] P. Ivanisvili, A. Volberg, Hessian of Bellman functions and uniqueness of the Brascamp-Lieb inequality, J. London Math. Soc (2015) doi:10.1112/ jlms/jdv040. · Zbl 1395.42061
[27] R. Latala On some inequalities for Gaussian measures. Proceedings of the International Congress of Mathematicians, Vol. II. (Beijing, 2002), 813-822, Higher Ed. Press, Beijing 2002. · Zbl 1015.60011
[28] R. Latala, K. Oleszkiewicz, Between Sobolev and Poincar´e, Geometric Aspects of Functional Analysis. Lect. Notes Math., 1745: 147-168, 2000 · Zbl 0986.60017
[29] M. Ledoux, Remarks on Gaussian noise stability, Brascamp-Lieb and Slepian inequalities, Geometric Aspects of Functional Analysis, 309-333, Lecture Notes in Math., 2116, Springer (2014). · Zbl 1330.60036
[30] M. Ledoux, L’alg‘ebre de Lie des gradients it´er´es d’un g´en´erateur markovien – d´eveloppements de moyennes et entropies, Annales scientifiques de l’ ´E.N.S. 4es´erie, tome 28, no4 (1995), p. 435-460. · Zbl 0842.60075
[31] E. Mossel, J. Neeman, Robust optimality of Gaussian noise stability (2012). · Zbl 1384.60062
[32] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 88 (1958), 931-954. · Zbl 0096.06902
[33] R. O’Donell, Analysis of Boolean Functions. (2013).
[34] I. Popescu, A refinement of the Brascamp-Lieb-Poincar´e inequality in one dimension, Comptes Rendus Math´ematique, 352, Issue 1 (2014), 55-58 · Zbl 1288.26014
[35] G. Philippis, A. Figalli, The Monge-Amp‘ere equation and its link to optimal transportation, Bulletin of the AMS, Vo. 5, no. 4, pp. 527-580. · Zbl 1515.35005
[36] N.S. Trudinger, X. Wang, The Monge-Amp‘ere equation and its geometric applications, Handbook of Geometric Analysis, International Press, 2008, Vol I, pp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.