×

Uniformly rotating smooth solutions for the incompressible 2D Euler equations. (English) Zbl 1405.35147

The existence of a family of compactly supported smooth solutions of the two-dimensional incompressible Euler system is shown. These are solutions that rotate uniformly in time and space, and they enjoy \(m\)-fold symmetry properties. This construction can be extended to the case of generalized surface quasigeostrophic equations which leads to a family of global in time solutions.

MSC:

35Q31 Euler equations
76B99 Incompressible inviscid fluids
58D30 Applications of manifolds of mappings to the sciences

References:

[1] Arnol’d V.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16(fasc. 1), 319-361 (1966) · Zbl 0148.45301
[2] Arnol’d V.I.: An a priori estimate in the theory of hydrodynamic stability. Izv. Vysš. Učebn. Zaved. Matematika 5(54), 3-5 (1966) · Zbl 0158.44904
[3] Arnold V.I., Khesin B.A.: Topological methods in hydrodynamics, volume 125 of Applied Mathematical Sciences. Springer, New York (1998) · Zbl 0902.76001
[4] Bedrossian J., Masmoudi N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. Inst. Hautes Études Sci. 122, 195-300 (2015) · Zbl 1375.35340
[5] Bertozzi A.L., Constantin P.: Global regularity for vortex patches. Commun. Math. Phys. 152(1), 19-28 (1993) · Zbl 0771.76014
[6] Burbea J.: Motions of vortex patches. Lett. Math. Phys. 6(1), 1-16 (1982) · Zbl 0484.76031
[7] Castro A., Córdoba D., Gómez-Serrano J.: Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations. Duke Math. J. 165(5), 935-984 (2016) · Zbl 1339.35234
[8] Castro, A., Córdoba, D., Gómez-Serrano, J.: Global smooth solutions for the inviscid SQG equation. Arxiv preprint arXiv:1603.03325 (2016) · Zbl 1444.35003
[9] Castro A., Córdoba D., Gómez-Serrano J.: Uniformly rotating analytic global patch solutions for active scalars. Ann. PDE 2(1), 1-34 (2016) · Zbl 1397.35020
[10] Chemin J.-Y.: Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. Ann. Sci. École Norm. Sup. (4) 26(4), 517-542 (1993) · Zbl 0779.76011
[11] Choffrut A., Šverák V.: Local structure of the set of steady-state solutions to the 2D incompressible Euler equations. Geom. Funct. Anal. 22(1), 136-201 (2012) · Zbl 1256.35076
[12] Choffrut A., Székelyhidi L. Jr: Weak solutions to the stationary incompressible Euler equations. SIAM J. Math. Anal. 46(6), 4060-4074 (2014) · Zbl 1311.35194
[13] Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321-340 (1971) · Zbl 0219.46015
[14] de la Hoz F., Hmidi T., Mateu J., Verdera J.: Doubly connected V-states for the planar Euler equations. SIAM J. Math. Anal. 48(3), 1892-1928 (2016) · Zbl 1342.35239
[15] Deem G.S., Zabusky N.J.: Vortex waves: Stationary “V-states”, interactions, recurrence, and breaking. Phys. Rev. Lett. 40(13), 859-862 (1978)
[16] Elgindi, T.M., Jeong, I.-J.: Symmetries and critical phenomena in fluids. ArXiv preprint arXiv:1610.09701 (2016) · Zbl 1442.76031
[17] Hassainia Z., Hmidi T.: On the V-states for the generalized quasi-geostrophic equations. Commun. Math. Phys. 337(1), 321-377 (2015) · Zbl 1319.35188
[18] Hmidi T., Mateu J.: Existence of corotating and counter-rotating vortex pairs for active scalar equations. Commun. Math. Phys. 350(2), 699-747 (2017) · Zbl 1360.35157
[19] Hmidi T., Mateu J., Verdera J.: Boundary regularity of rotating vortex patches. Arch. Ration. Mech. Anal. 209(1), 171-208 (2013) · Zbl 1286.35201
[20] Kiselev A., Šverák V.: Small scale creation for solutions of the incompressible two dimensional Euler equation. Ann. Math. (2) 180(3), 1205-1220 (2014) · Zbl 1304.35521
[21] Luo G., Hou T.Y.: Potentially singular solutions of the 3d axisymmetric euler equations. Proc. Natl. Acad. Sci. 111(36), 12968-12973 (2014) · Zbl 1431.35115
[22] Luo X., Shvydkoy R.: 2D homogeneous solutions to the Euler equation. Commun. Partial Differ. Equ. 40(9), 1666-1687 (2015) · Zbl 1329.35237
[23] Luo, X., Shvydkoy, R.: Addendum: 2D homogeneous solutions to the Euler equation. ArXiv preprint arXiv:1608.00061 (2016) · Zbl 1430.35191
[24] Marchioro C., Pulvirenti M.: Mathematical theory of incompressible nonviscous fluids, volume 96 of Applied Mathematical Sciences. Springer, New York (1994) · Zbl 0789.76002
[25] Nadirashvili N.: On stationary solutions of two-dimensional Euler equation. Arch. Ration. Mech. Anal. 209(3), 729-745 (2013) · Zbl 1287.35062
[26] Serfati P.: Une preuve directe d’existence globale des vortex patches 2D. C. R. Acad. Sci. Paris Sér. I Math 318(6), 515-518 (1994) · Zbl 0803.76022
[27] Yudovich V.I.: Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. i Mat. Fiz. 3, 1032-1066 (1963) · Zbl 0129.19402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.