×

On the V-states for the generalized quasi-geostrophic equations. (English) Zbl 1319.35188

In this article the authors study a generalized surface quasigeostrophic system introduced by D. Córdoba et al. [Proc. Natl. Acad. Sci. USA 102, No. 17, 5949–5952 (2005; Zbl 1135.76315)] as a model of atmospheric-oceanic flow, interpolating through a parameter \(0\leq\alpha\leq 1\) between the inviscid Euler system (\(\alpha=0\)) and the surface quasigeostrophic system (\(\alpha=1\)). They concentrate on particular vortex solutions called V-states, introduced by G. S. Deem and N. J. Zabusky, [“Vortex waves: stationary “V-states”, interactions, recurrence, and breaking”, Phys. Rev. Lett. 40(13), 859–862 (1978)] as rotating patches: simply connected, rigidly rotating domains.
They extend previous works on the Euler system for \(\alpha=0\) to the \(\alpha>0\) case, using the bifurcation machinery of Crandall-Rabinowitz and singular integrals arguments, allowing them to prove existence of an infinite family of non stationary global solutions.

MSC:

35Q35 PDEs in connection with fluid mechanics
35B65 Smoothness and regularity of solutions to PDEs
86A05 Hydrology, hydrography, oceanography

Citations:

Zbl 1135.76315

References:

[1] Ambaum M.H.P., Harvey B.J.: Perturbed Rankine vortices in surface quasi-geostrophic dynamics. Geophys. Astrophys. Fluid Dyn. 105(4-5), 377-391 (2011) · Zbl 1521.86023
[2] Aref H.: Integrable, chaotic, and turbulent vortex motion in two-dimensional flows. Annu. Rev. Fluid Mech. 15, 345-389 (1983) · Zbl 0562.76029 · doi:10.1146/annurev.fl.15.010183.002021
[3] Bertozzi A.L., Majda A.J.: Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002) · Zbl 0983.76001
[4] Burbea J.: Motions of vortex patches. Lett. Math. Phys. 6, 1-16 (1982) · Zbl 0484.76031 · doi:10.1007/BF02281165
[5] Castro A., Córdoba D., Gómez-Serrano J., Martín Zamora A.: Remarks on geometric properties of SQG sharp fronts and α-patches. Discrete Contin. Dyn. Syst. 34(12), 5045-5059 (2014) · Zbl 1299.76032 · doi:10.3934/dcds.2014.34.5045
[6] Chae D., Constantin P., Córdoba D., Gancedo F., Wu J.: Generalized surface quasi-geostrophic equations with singular velocities. Commun. Pure Appl. Math. 65(8), 1037-1066 (2012) · Zbl 1244.35108 · doi:10.1002/cpa.21390
[7] Chaplygin, S.A.: On a pulsating cylindrical vortex. Translated from the 1899 Russian original by G. Krichevets, edited by D. Blackmore and with comments by V. V. Meleshko. Regul. Chaotic Dyn. 12(1), 101-116 (2007) · Zbl 1229.37043
[8] Chemin, J.Y.: Fluides parfaits incompressibles. Astérisque, vol. 230, Société Mathématique de France (1995) · Zbl 0829.76003
[9] Constantin P., Majda A.J., Tabak E.: Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7(6), 1495-1533 (1994) · Zbl 0809.35057 · doi:10.1088/0951-7715/7/6/001
[10] Córdoba D., Fontelos M.A., Mancho A.M., Rodrigo J.L.: Evidence of singularities for a family of contour dynamics equations. Proc. Natl. Acad. Sci. USA 102, 5949-5952 (2005) · Zbl 1135.76315 · doi:10.1073/pnas.0501977102
[11] Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321-340 (1971) · Zbl 0219.46015 · doi:10.1016/0022-1236(71)90015-2
[12] Deem G.S., Zabusky N.J.: Vortex waves: stationary “V-states”, interactions, recurrence, and breaking. Phys. Rev. Lett. 40(13), 859-862 (1978) · doi:10.1103/PhysRevLett.40.859
[13] Duren P.L.: Univalent functions, Grundlehren der mathematischen Wissenschaften, vol. 259. Springer, New York (1983) · Zbl 0514.30001
[14] Flierl G.R., Polvani L.M.: Generalized Kirchhoff vortices. Phys. Fluids 29, 2376-2379 (1986) · Zbl 0601.76015 · doi:10.1063/1.865530
[15] Gancedo F.: Existence for the α-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217(6), 2569-2598 (2008) · Zbl 1148.35099 · doi:10.1016/j.aim.2007.10.010
[16] Harvey B.J., Ambaum M.H.P.: Perturbed Rankine vortices in surface quasi-geostrophic dynamics. Geophys. Astrophys. Fluid Dyn. 105(4-5), 377-391 (2011) · Zbl 1521.86023 · doi:10.1080/03091921003694719
[17] Held I., Pierrehumbert R., Garner S., Swanson K.: Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 1-20 (1995) · Zbl 0832.76012 · doi:10.1017/S0022112095000012
[18] Hmidi T., Mateu J., Verdera J.: Boundary regularity of rotating vortex patches. Arch. Ration. Mech. Anal. 209(1), 171-208 (2013) · Zbl 1286.35201 · doi:10.1007/s00205-013-0618-8
[19] Hmidi, T., Mateu, J., Verdera, J.: On rotating doubly connected vortices. J. Differ. Equations 258(4), 1395-1429 (2015) · Zbl 1446.76086
[20] Hmidi, T.: On the trivial solutions for the rotating patch model. arXiv:1409.8469 · Zbl 1338.35365
[21] Juckes, M.: Quasigeostrophic dynamics of the tropopause. J. Armos. Sci., 2756-2768 (1994) · Zbl 0809.35057
[22] Kida S.: Motion of an elliptical vortex in a uniform shear flow. J. Phys. Soc. Japan 50, 3517-3520 (1981) · doi:10.1143/JPSJ.50.3517
[23] Kielhöfer H.: Bifurcation Theory: An Introduction With Applications to Partial Differential Equations. Springer, Berlin (2011)
[24] Kirchhoff, G.: Vorlesungen uber mathematische Physik, Leipzig (1874) · JFM 08.0542.01
[25] Lamb H.: Hydrodynamics. Dover Publications, New York (1945) · JFM 26.0868.02
[26] Lapeyre G., Klein P.: Dynamics of the upper oceanic layers in terms of surface quasigeostrophic theory. J. Phys. Oceanogr. 36, 165-176 (2006) · doi:10.1175/JPO2840.1
[27] Magnus W., Oberhettinger F.: Formeln und satze fur die speziellen funktionen der mathematischen physik. Springer, Berlin (1948) · Zbl 0039.29701 · doi:10.1007/978-3-662-01222-2
[28] Mateu J., Orobitg J., Verdera J.: Extra cancellation of even Calderón-Zygmund operators and quasiconformal mappings. J. Math. Pures Appl. 91(4), 402-431 (2009) · Zbl 1179.30017 · doi:10.1016/j.matpur.2009.01.010
[29] Neu J.: The dynamics of columnar vortex in an imposed strain. Phys. Fluids 27, 2397-2402 (1984) · Zbl 0582.76021 · doi:10.1063/1.864543
[30] Newton P.K.: The N-Vortex Problem. Analytical Techniques. Springer, New York (2001) · Zbl 0981.76002
[31] Pommerenke Ch.: Boundary Behaviour of Conformal Maps. Springer, Berlin (1992) · Zbl 0762.30001
[32] Rodrigo J.L.: On the evolution of sharp fronts for the quasi-geostrophic equation. Commun. Pure Appl. Math. 58(6), 821-866 (2005) · Zbl 1073.35006 · doi:10.1002/cpa.20059
[33] Verdera J.: L2 boundedness of the Cauchy integral and Menger curvature. Contemp. Math. 277, 139-158 (2001) · Zbl 1002.42011 · doi:10.1090/conm/277/04543
[34] Warschawski S.E.: On the higher derivatives at the boundary in conformal mapping. Trans. Am. Math. Soc. 38(2), 310-340 (1935) · JFM 61.0361.01 · doi:10.1090/S0002-9947-1935-1501813-X
[35] Watson G.A.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1944) · Zbl 0063.08184
[36] Wittmann R.: Application of a theorem of M.G. Krein to singular integrals. Trans. Am. Math. Soc. 299(2), 581-599 (1987) · Zbl 0596.42005
[37] Wu H.M., Overman E.A. II, Zabusky N.J.: Steady-state solutions of the Euler equations in two dimensions: rotating and translating V-states with limiting cases I. Algorithms ans results. J. Comput. Phys. 53, 42-71 (1984) · Zbl 0524.76029 · doi:10.1016/0021-9991(84)90051-2
[38] Yudovich Y.: Nonstationary flow of an ideal incompressible liquid. Zh. Vych. Mat. 3, 1032-1066 (1963) · Zbl 0129.19402
[39] Zabusky N., Hughes M.H., Roberts K.V.: Contour dynamics for the Euler equations in two dimensions. J. Comput. Phys. 30(1), 96-106 (1979) · Zbl 0405.76014 · doi:10.1016/0021-9991(79)90089-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.