×

Counting points on Igusa varieties. (English) Zbl 1218.11061

The author presents a counting-point formula for the cohomology of Igusa varieties. He constructs a Shimura variety \(X\) defined over the reflex field \(E\) along with an integral model, starting from an integral Shimura PEL datum of type (A) or (C). Let \(G\) be the associated algebraic group over \({\mathbb Q}\), \(p\) a prime number such that \(G\) is unramified at \(p\), \(J_b\) the \({\mathbb Q}_p\)-group arising as the automorphism group of an isocrystal of type \(b\). The Igusa variety \(\text{Ig}_b\) is defined as a projective system. The group \(G({\mathbb A}^{\infty,p})\times J_b({\mathbb Q}_p)\) acts on \(H_c(\text{Ig}_b, \mathcal{ L}_\xi)\), while \(G({\mathbb A}^\infty)\times \text{Gal}(\bar{E}/E)\) acts on \(H(X,\mathcal {L}_\xi)\), where \(\mathcal {L}_\xi\) is an \(l\)-adic sheaf constructed from an algebraic representation of \(G\). If \(\varphi\in C_c^\infty(G({\mathbb A}^{\infty,p})\times J_b({\mathbb Q}_p))\) is acceptable, then \[ \text{tr}(\varphi|H_c(\text{Ig}_b, \mathcal {L}_\xi))=\sum_{(\gamma_0;\gamma,\delta)\in KT_b^{\text{eff}}}\text{vol}(I_\infty(\mathbb R)^1)^{-1}|A(I_0)| \text{tr}\xi(\gamma_0)\cdot O_{(\gamma,\delta)}^{G({\mathbb A}^{\infty,p})\times J_b({\mathbb Q}_p)}(\varphi). \]

MSC:

11G18 Arithmetic aspects of modular and Shimura varieties
11G25 Varieties over finite and local fields
14G15 Finite ground fields in algebraic geometry
Full Text: DOI

References:

[1] A. Borel, “Automorphic \(L\)-functions” in Automorphic Forms, Representations, and \(L\) Functions, Part 2 (Corvallis, Ore., 1977) , Proc. Sympos. Pure Math. 33 , Amer. Math. Soc., Providence, 1979, 27–61. · Zbl 0412.10017
[2] M. Borovoi, Abelian Galois cohomology of reductive groups , Mem. Amer. Math. Soc. 132 (1998), no. 626. · Zbl 0918.20037
[3] L. Clozel, Représentations galoisiennes associées aux représentations automorphes autoduales de \(\hbox\mathrm GL(n)\), Inst. Hautes Eťudes Sci. Publ. Math. 73 (1991), 97–145. · Zbl 0739.11020 · doi:10.1007/BF02699257
[4] M. Demazure, Lectures on \(p\)-Divisible Groups , Lecture Notes in Math. 302 , Springer, Berlin, 1972. · Zbl 0247.14010
[5] L. Fargues, “Cohomologie des espaces de modules de groupes \(p\)-divisibles et correspondances de Langlands locales” in Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales , Astérisque 291 , Soc. Math. France, Montrouge, 2004, 1–199. · Zbl 1196.11087
[6] K. Fujiwara, Rigid geometry, Lefschetz-Verdier trace formula and Deligne’s conjecture , Invent. Math. 127 (1997), 489–533. · Zbl 0920.14005 · doi:10.1007/s002220050129
[7] M. Harris and R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties , Ann. of Math. Stud. 151 , Princeton Univ. Press, Princeton, 2001. · Zbl 1036.11027
[8] R. Kottwitz, Shimura varieties and twisted orbital integrals , Math. Ann. 269 (1984), 287–300. · Zbl 0533.14009 · doi:10.1007/BF01450697
[9] -, Stable trace formula: Cuspidal tempered terms , Duke Math. J. 51 (1984), 611–650. · Zbl 0576.22020 · doi:10.1215/S0012-7094-84-05129-9
[10] -, Isocrystals with additional structure , Compositio Math. 56 (1985), 201–220. · Zbl 0597.20038
[11] -, Stable trace formula: Elliptic singular terms , Math. Ann. 275 (1986), 365–399. · Zbl 0577.10028 · doi:10.1007/BF01458611
[12] -, Tamagawa numbers , Ann. of Math. (2) 127 (1988), 629–646. JSTOR: · Zbl 0678.22012 · doi:10.2307/2007007
[13] -, “Shimura varieties and \(\lambda\)-adic representations” in Automorphic Forms, Shimura Varieties, and \(L\)-functions, Vol. I (Ann Arbor, Mich., 1988) , Perspect. Math. 10 , Academic Press, Boston, 1990, 161–209. · Zbl 0743.14019
[14] -, Points on some Shimura varieties over finite fields , J. Amer. Math. Soc. 5 (1992), 373–444. JSTOR: · Zbl 0796.14014 · doi:10.2307/2152772
[15] -, Isocrystals with additional structure, II , Compositio Math. 109 (1997), 255–339. · Zbl 0966.20022 · doi:10.1023/A:1000102604688
[16] J.-P. Labesse, Cohomologie, stabilisation et changement de base , Astérisque 257 , Soc. Math France, Montrogue, (1999). · Zbl 1024.11034
[17] R. P. Langlands and D. Ramakrishnan, eds., The Zeta Functions of Picard Modular Surfaces , Université de Montréal, Centre de Recherches Math., Montréal, 1992.
[18] E. Mantovan, “On certain unitary group Shimura varieties” in Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales , Soc. Math. France, Montrouge, 2004, Astérisque 291 , 201–331. · Zbl 1062.11036
[19] -, On the cohomology of certain PEL -type Shimura varieties, Duke Math. J. 129 (2005), 573–610. · Zbl 1112.11033 · doi:10.1215/S0012-7094-05-12935-0
[20] W. Messing, The Crystals associated to Barsotti-Tate Groups: With Applications to Abelian Schemes , Lecture Notes in Math. 264 , Springer, Berlin, 1972. · Zbl 0243.14013 · doi:10.1007/BFb0058301
[21] M. Rapoport and M. Richartz, On the classification and specialization of \(F\) -isocrystals with additional structure, Compositio Math. 103 (1996), 153–181. · Zbl 0874.14008
[22] M. Rapoport and T. Zink, Period Spaces for \(p\)-Divisible Groups , Ann. of Math. Stud. 141 , Princeton Univ. Press, Princeton, 1996. · Zbl 0873.14039
[23] S. W. Shin, Counting points on Igusa varieties , Ph.D. dissertation, Harvard University, Cambridge, Mass., 2007. · Zbl 1218.11061
[24] -, Stable trace formula for Igusa varieties , in preparation. · Zbl 1206.22011 · doi:10.1017/S1474748010000046
[25] Y. Varshavsky, Leftschetz-Verdier trace formula and a generalization of a theorem of Fujiwara , Geom. Funct. Anal. 17 (2007), 271–319. · Zbl 1131.14019 · doi:10.1007/s00039-007-0596-9
[26] J.-P. Wintenberger, Existence de \(F\) -cristaux avec structures supplémentaires, Adv. Math. 190 (2005), 196–224. · Zbl 1104.14013 · doi:10.1016/j.aim.2003.12.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.