×

On globally diffeomorphic polynomial maps via Newton polytopes and circuit numbers. (English) Zbl 1405.14130

If a polynomial map \(F: \mathbb{R}^n \to \mathbb{R}^n\) is a diffeomorphism, then the Jacobian \(JF\) of \(F\) satisfies \(\det JF \neq 0\) everywhere. However, there exist polynomial maps \(F\) for which \(\det JF \neq 0\) everywhere even though \(F\) is not a diffeomorphism [S. Pinchuk, Math. Z. 217, No. 1, 1–4 (1994; Zbl 0874.26008)]. Thus having a nonvanishing Jacobian determinant on its own does not yield a characterization of polynomial diffeomorphisms of \(\mathbb{R}^n\). The article treats the question which further assumptions on the polynomial map \(F\) are needed to deduce from \(\det(F)\neq 0\) that \(F\) is a diffeomorphism.
J. Hadamard [C. R. Acad. Sci., Paris 142, 74–77 (1906; JFM 37.0672.01)] characterized the diffeomorphism property for general \(C^1\)-maps \(F\) by the topological condition of properness: A \(C^1\)-map \(F: \mathbb{R}^n \to \mathbb{R}^n\) is a diffeomorphism if and only if \(\det JF \neq 0\) everywhere and \(F\) is proper, i.e. the preimages of compact sets under \(F\) are compact. However, for polynomial maps a characterization in terms of the polynomial coefficients is desirable and more applicable than Hadamard’s abstract characterization. The authors tackle this objective by giving sufficient criteria for the properness of \(F\) in terms of the coefficients of \(\|F\|_2^2\), making use of the Newton Polytope of \(\|F\|_2^2\) and the fact that \(\|F\|_2^2\) is a Sums-of-Squares polynomial. Key ingredients are the notions of gem regularity and circuit numbers.
In previous work [SIAM J. Optim. 25, No. 3, 1542–1570 (2015; Zbl 1322.90092)], the authors exhibited sufficient and necessary conditions for the properness of \(F\) that are being used in this article. Thus the present work focuses on the discussion of a parameterized family of illustrative examples. There, a small gap in between the necessary and sufficient criteria for properness manifests: The properness of \(F\) is invariant under linear transformations \(F\mapsto F\circ A\) (with \(A \in \text{GL}_n(\mathbb{R})\)), but the given sufficient criterion is not. The authors treat one example where direct application of their criterion fails and give an explicit linear map \(A\) that makes it applicable.

MSC:

14P05 Real algebraic sets
26B10 Implicit function theorems, Jacobians, transformations with several variables
26C05 Real polynomials: analytic properties, etc.
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)
14R15 Jacobian problem

References:

[1] Avis, D., Fukuda, K.: A Pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discret. Comput. Geom. 8, 295-313 (1992) · Zbl 0752.68082 · doi:10.1007/BF02293050
[2] Bajbar, T., Stein, O.: Coercive polynomials and their Newton polytopes. SIAM J. Optim. 25(3), 1542-1570 (2015) · Zbl 1322.90092 · doi:10.1137/140980624
[3] Banach, S., Mazur, B.: Über mehrdeutige stetige Abbildungen. Stud. Math. 5, 174-178 (1934) · Zbl 0013.08202 · doi:10.4064/sm-5-1-174-178
[4] Bass, H., Connell, E., Wright, D.: The Jacobian conjecture: reduction of degree and formal expansion of the inverse. Bull. Am. Math. Soc. 7, 287-330 (1982) · Zbl 0539.13012 · doi:10.1090/S0273-0979-1982-15032-7
[5] Białynicki-Birula, A., Rosenlicht, M.: Injective morphisms of real algebraic varieties. Proc. AMS 13, 200-203 (1962) · Zbl 0107.14602 · doi:10.1090/S0002-9939-1962-0140516-5
[6] Bivià-Ausina, C.: Injectivity of real polynomial maps and Lojasiewicz exponents at infinity. Math. Z. 257(4), 745-767 (2007) · Zbl 1183.14076 · doi:10.1007/s00209-007-0129-0
[7] Bremner, D., Fukuda, K., Marzetta, A.: Primal-dual methods for vertex and facet enumeration. Discret. Comput. Geom. 20, 333-357 (1998) · Zbl 0910.68217 · doi:10.1007/PL00009389
[8] Caccioppoli, R.: Sugli elements uniti delle transformazioni funzionali. Rc. Mat. Padova 3, 1-15 (1932) · Zbl 0005.16701
[9] Chen, Y., Dias, L.R.G., Takeuchi, K., Tibăr, M.: Invertible polynomial mappings via Newton non-degeneracy. Ann. l’Inst. Fourier 54(5), 1807-1822 (2014) · Zbl 1327.58034 · doi:10.5802/aif.2897
[10] Chichilnisky, G.: Topology and invertible maps. Adv. Appl. Math. 21, 113-123 (1998) · Zbl 0915.58014 · doi:10.1006/aama.1998.0584
[11] De Angelis, V., Tuncel, S.: Handelman’s theorem on polynomials with positive multiples. In: Codes, Systems, and Graphical Models. The IMA Volumes in Mathematics and Its Applications, vol. 123, pp. 439-445 (2001) · Zbl 1091.13507
[12] De Marco, G., Gorni, G., Zampieri, G.: Global inversion of functions: an introduction. Nonlinear Differ. Equ. Appl. 1, 229-248 (1994) · Zbl 0820.58008 · doi:10.1007/BF01197748
[13] Dinh, S.T., Ha, H.V., Pham, T.S., Thao, N.T.: Global Lojasiewicz-type inequality for non-degenerate polynomial maps. J. Math. Anal. Appl. 410(2), 541-560 (2014) · Zbl 1311.14055 · doi:10.1016/j.jmaa.2013.08.044
[14] Drużkowski, L.: The Jacobian Conjecture: survey of some results. Banach Cent. Publ. 31(1), 163-171 (1995) · Zbl 0833.14008 · doi:10.4064/-31-1-163-171
[15] Fukui, T., Kurdyka, K., Paunescu, L.: Tame Nonsmooth inverse mapping theorems. SIAM J. Optim. 20(3), 1573-1590 (2010) · Zbl 1203.26019 · doi:10.1137/080718279
[16] Gale, D., Nikaidô, H.: The Jacobian matrix and global univalence of mappings. Math. Ann. 159(2), 81-93 (1965) · Zbl 0158.04903 · doi:10.1007/BF01360282
[17] Gao, S.: Absolute irreducibility of polynomials via Newton polytopes. J. Algebra 237, 501-520 (2001) · Zbl 0997.12001 · doi:10.1006/jabr.2000.8586
[18] Gasiński, L., Papageorgiou, N.S.: Nonlinear Analysis. Series in Mathematical Analysis and Applications. Chapman & Hall/CRC Press, Taylor & Francis Group, Boca Raton (2005) · Zbl 1266.32036
[19] Gordon, W.B.: On the diffeomorphisms of Euclidean space. Am. Math. Mon. 79(7), 755-759 (1972) · Zbl 0263.57015 · doi:10.2307/2316266
[20] Hadamard, J.S.: Sur les transformations planes. Comptes Rendus de l’Acadmie des Sciences Paris 142, 74 (1906) · JFM 37.0672.01
[21] Hadamard, J.S.: Sur les transformations ponctuelles. Bulletin de la Socit Mathmatique de France 34, 71-84 (1906) · JFM 37.0672.02 · doi:10.24033/bsmf.771
[22] Hadamard, J.S.: Sur les correspondances ponctuelles. Oeuvres, pp. 349-363. Editions du Centre Nationale de la Recherche Scientifique, Paris (1968) · Zbl 0395.10037
[23] Iliman, S., de Wolff, T.: Amoebas, nonnegative polynomials and sums of squares supported on circuits. Res. Math. Sci. 3(1), 1-35 (2016) · Zbl 1415.11071
[24] Kaveh, K., Khovanskii, A.G.: Algebraic equations and convex bodies. In: Itenberg, I., Jöricke, B., Passare, M. (eds.) Perspectives in Analysis, Geometry, and Topology, on the Occasion of the 60th Birthday of Oleg Viro, Progress in Mathematics, vol. 296, pp. 263-282. Birkhäuser Verlag Ag (2012) · Zbl 1316.52011
[25] Keller, O.: Ganze Cremona-Transformationen. Monatsh. Math. Phys. 47, 299-306 (1939) · Zbl 0021.15303 · doi:10.1007/BF01695502
[26] Khovanskii, A., Esterov, A.: Elimination theory and Newton polytopes. Funct. Anal. Other Math. 2, 45-71 (2008) · Zbl 1192.14038 · doi:10.1007/s11853-008-0015-2
[27] Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1-31 (1976) · Zbl 0328.32007 · doi:10.1007/BF01389769
[28] Krantz, S.G.: Convex Analysis. CRC Press, Taylor & Francis Group, Boca Raton (2015) · Zbl 1310.26001
[29] Krantz, S.G., Parks, H.R.: The Implicit Function Theorem, History, Theory, and Applications. Birkhäuser Basel, New York (2003). doi:10.1007/978-1-4612-0059-8 · Zbl 1012.58003
[30] Kurdyka, K., Rusek, K.: Polynomial-rational bijections of \[\mathbb{R}^nRn\]. Proc. Am. Math. Soc. 102(4), 804-808 (1988) · Zbl 0718.13006
[31] Kurdyka, K., Rusek, K.: Surjectivity of certain injective semialgebraic transformations of \[\mathbb{R}^nRn\]. Math. Z. 200, 141-148 (1988) · Zbl 0641.14010 · doi:10.1007/BF01161750
[32] Kushnirenko, A.G.: Newton polytopes and the Bézout theorem. Funct. Anal. Appl. (translated from Russian) 10, 233-235 (1977) · Zbl 0341.32001 · doi:10.1007/BF01075534
[33] Levy, M.P.: Sur les fonctions de ligne implicites. Bulletin de la Société Mathématique de France 48, 13-27 (1920) · JFM 47.0381.01 · doi:10.24033/bsmf.1001
[34] Mas-Colell, A.: Homeomorphisms of compact, convex sets and the Jacobian matrix. SIAM J. Math. Anal. 10(6), 1105-1109 (1979) · Zbl 0437.52003 · doi:10.1137/0510101
[35] Moh, T.T.: On the Jacobian conjecture and the configurations of roots. Journal für die reine und angewandte Mathematik 340, 140-212 (1983) · Zbl 0525.13011
[36] Netzer, T.: Stability of quadratic modules. Manuscr. Math. 129, 251-271 (2009) · Zbl 1209.13027 · doi:10.1007/s00229-009-0258-3
[37] Palais, R.S.: Natural operations on differential forms. Trans. Am. Math. Soc. 92, 121-141 (1959) · Zbl 0092.30802 · doi:10.1090/S0002-9947-1959-0116352-7
[38] Pham, T.S.: On the topology of the Newton boundary at infinity. J. Math. Soc. Jpn. 60, 1065-1081 (2008) · Zbl 1159.32016 · doi:10.2969/jmsj/06041065
[39] Pinchuk, S.: A counterexample to the real Jacobian Conjecture. Math. Z. 217, 1-4 (1994) · Zbl 0874.26008
[40] Plastock, R.: Homeomorphisms between Banach spaces. Trans. Am. Math. Soc. 200, 169-183 (1974) · Zbl 0291.54009 · doi:10.1090/S0002-9947-1974-0356122-6
[41] Rabier, P.J.: On global diffeomorphisms of Euclidean space. Nonlinear Anal. Theory Methods Appl. 21(12), 925-947 (1993) · Zbl 0807.57017 · doi:10.1016/0362-546X(93)90117-B
[42] Rabier, P.J.: Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds. Ann. Math. 146, 647-691 (1997) · Zbl 0919.58003 · doi:10.2307/2952457
[43] Reznick, B.: Extremal PSD forms with few terms. Duke Math. J. 45, 363-374 (1978) · Zbl 0395.10037 · doi:10.1215/S0012-7094-78-04519-2
[44] Ruzhansky, M., Sugimoto, M.: On global inversion of homogenous maps. Bull. Math. Sci. 5(1), 13-18 (2015) · Zbl 1317.26012 · doi:10.1007/s13373-014-0059-1
[45] Samuelson, P.A.: Prices of factors and goods in general equilibrium. Rev. Econ. Stud. 21(1), 1-20 (1953) · doi:10.2307/2296256
[46] Sturmfels, B.: Polynomial equations and convex polytopes. Am. Math. Mon. 105, 907-922 (1998) · Zbl 0988.52021 · doi:10.2307/2589283
[47] Thang, N.T.: Bifurcation set, M-tameness, asymptotic critical values and Newton polyhedrons. Kodai Math. J. 36, 77-90 (2013) · Zbl 1266.32036 · doi:10.2996/kmj/1364562720
[48] van den Essen, A.: To believe or not to believe: the Jacobian conjecture. Rendiconti del Seminario Matematico Universitè Politecnico di Torino 55(4), 283-290 (1997) · Zbl 0920.13013
[49] van den Essen, A.: Polynomial Automorphisms and the Jacobian Conjecture. Progress in Mathematics, vol. 190. Birkhäuser, Basel (2000) · Zbl 0962.14037
[50] Wang, S.: Jacobian criterion for separability. J. Algebra 21, 453-494 (1980) · Zbl 0471.13005
[51] Wright, D.: The Jacobian Conjecture: Ideal Membership Questions and Recent Advances. Contemporary Mathematics, vol. 369 (2005) · Zbl 1079.14067
[52] Yagzhev, A.V.: On Keller’s problem. Sib. Math. J. 21, 747-754 (1980) · Zbl 0466.13009 · doi:10.1007/BF00973892
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.