Skip to main content
Log in

On globally diffeomorphic polynomial maps via Newton polytopes and circuit numbers

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this article we analyze the global diffeomorphism property of polynomial maps \(F:\mathbb {R}^n\rightarrow \mathbb {R}^n\) by studying the properties of the Newton polytopes at infinity corresponding to the sum of squares polynomials \(\Vert F\Vert _2^2\). This allows us to identify a class of polynomial maps F for which their global diffeomorphism property on \(\mathbb {R}^n\) is equivalent to their Jacobian determinant \(\det JF\) vanishing nowhere on \(\mathbb {R}^n\). In other words, we identify a class of polynomial maps for which the Real Jacobian Conjecture, which was proven to be false in general, still holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Avis, D., Fukuda, K.: A Pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discret. Comput. Geom. 8, 295–313 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bajbar, T., Stein, O.: Coercive polynomials and their Newton polytopes. SIAM J. Optim. 25(3), 1542–1570 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banach, S., Mazur, B.: Über mehrdeutige stetige Abbildungen. Stud. Math. 5, 174–178 (1934)

    Article  MATH  Google Scholar 

  4. Bass, H., Connell, E., Wright, D.: The Jacobian conjecture: reduction of degree and formal expansion of the inverse. Bull. Am. Math. Soc. 7, 287–330 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Białynicki-Birula, A., Rosenlicht, M.: Injective morphisms of real algebraic varieties. Proc. AMS 13, 200–203 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bivià-Ausina, C.: Injectivity of real polynomial maps and Lojasiewicz exponents at infinity. Math. Z. 257(4), 745–767 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bremner, D., Fukuda, K., Marzetta, A.: Primal-dual methods for vertex and facet enumeration. Discret. Comput. Geom. 20, 333–357 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caccioppoli, R.: Sugli elements uniti delle transformazioni funzionali. Rc. Mat. Padova 3, 1–15 (1932)

    MATH  Google Scholar 

  9. Chen, Y., Dias, L.R.G., Takeuchi, K., Tibăr, M.: Invertible polynomial mappings via Newton non-degeneracy. Ann. l’Inst. Fourier 54(5), 1807–1822 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chichilnisky, G.: Topology and invertible maps. Adv. Appl. Math. 21, 113–123 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Angelis, V., Tuncel, S.: Handelman’s theorem on polynomials with positive multiples. In: Codes, Systems, and Graphical Models. The IMA Volumes in Mathematics and Its Applications, vol. 123, pp. 439–445 (2001)

  12. De Marco, G., Gorni, G., Zampieri, G.: Global inversion of functions: an introduction. Nonlinear Differ. Equ. Appl. 1, 229–248 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dinh, S.T., Ha, H.V., Pham, T.S., Thao, N.T.: Global Lojasiewicz-type inequality for non-degenerate polynomial maps. J. Math. Anal. Appl. 410(2), 541–560 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Drużkowski, L.: The Jacobian Conjecture: survey of some results. Banach Cent. Publ. 31(1), 163–171 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fukui, T., Kurdyka, K., Paunescu, L.: Tame Nonsmooth inverse mapping theorems. SIAM J. Optim. 20(3), 1573–1590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gale, D., Nikaidô, H.: The Jacobian matrix and global univalence of mappings. Math. Ann. 159(2), 81–93 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, S.: Absolute irreducibility of polynomials via Newton polytopes. J. Algebra 237, 501–520 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gasiński, L., Papageorgiou, N.S.: Nonlinear Analysis. Series in Mathematical Analysis and Applications. Chapman & Hall/CRC Press, Taylor & Francis Group, Boca Raton (2005)

  19. Gordon, W.B.: On the diffeomorphisms of Euclidean space. Am. Math. Mon. 79(7), 755–759 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hadamard, J.S.: Sur les transformations planes. Comptes Rendus de l’Acadmie des Sciences Paris 142, 74 (1906)

    MATH  Google Scholar 

  21. Hadamard, J.S.: Sur les transformations ponctuelles. Bulletin de la Socit Mathmatique de France 34, 71–84 (1906)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hadamard, J.S.: Sur les correspondances ponctuelles. Oeuvres, pp. 349–363. Editions du Centre Nationale de la Recherche Scientifique, Paris (1968)

  23. Iliman, S., de Wolff, T.: Amoebas, nonnegative polynomials and sums of squares supported on circuits. Res. Math. Sci. 3(1), 1–35 (2016)

  24. Kaveh, K., Khovanskii, A.G.: Algebraic equations and convex bodies. In: Itenberg, I., Jöricke, B., Passare, M. (eds.) Perspectives in Analysis, Geometry, and Topology, on the Occasion of the 60th Birthday of Oleg Viro, Progress in Mathematics, vol. 296, pp. 263–282. Birkhäuser Verlag Ag (2012)

  25. Keller, O.: Ganze Cremona-Transformationen. Monatsh. Math. Phys. 47, 299–306 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  26. Khovanskii, A., Esterov, A.: Elimination theory and Newton polytopes. Funct. Anal. Other Math. 2, 45–71 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976)

    Article  MathSciNet  Google Scholar 

  28. Krantz, S.G.: Convex Analysis. CRC Press, Taylor & Francis Group, Boca Raton (2015)

    MATH  Google Scholar 

  29. Krantz, S.G., Parks, H.R.: The Implicit Function Theorem, History, Theory, and Applications. Birkhäuser Basel, New York (2003). doi:10.1007/978-1-4612-0059-8

  30. Kurdyka, K., Rusek, K.: Polynomial-rational bijections of \(\mathbb{R}^n\). Proc. Am. Math. Soc. 102(4), 804–808 (1988)

    MathSciNet  MATH  Google Scholar 

  31. Kurdyka, K., Rusek, K.: Surjectivity of certain injective semialgebraic transformations of \(\mathbb{R}^n\). Math. Z. 200, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kushnirenko, A.G.: Newton polytopes and the Bézout theorem. Funct. Anal. Appl. (translated from Russian) 10, 233–235 (1977)

    Article  MATH  Google Scholar 

  33. Levy, M.P.: Sur les fonctions de ligne implicites. Bulletin de la Société Mathématique de France 48, 13–27 (1920)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mas-Colell, A.: Homeomorphisms of compact, convex sets and the Jacobian matrix. SIAM J. Math. Anal. 10(6), 1105–1109 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  35. Moh, T.T.: On the Jacobian conjecture and the configurations of roots. Journal für die reine und angewandte Mathematik 340, 140–212 (1983)

    MathSciNet  MATH  Google Scholar 

  36. Netzer, T.: Stability of quadratic modules. Manuscr. Math. 129, 251–271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Palais, R.S.: Natural operations on differential forms. Trans. Am. Math. Soc. 92, 121–141 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pham, T.S.: On the topology of the Newton boundary at infinity. J. Math. Soc. Jpn. 60, 1065–1081 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pinchuk, S.: A counterexample to the real Jacobian Conjecture. Math. Z. 217, 1–4 (1994)

  40. Plastock, R.: Homeomorphisms between Banach spaces. Trans. Am. Math. Soc. 200, 169–183 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rabier, P.J.: On global diffeomorphisms of Euclidean space. Nonlinear Anal. Theory Methods Appl. 21(12), 925–947 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rabier, P.J.: Ehresmann fibrations and Palais–Smale conditions for morphisms of Finsler manifolds. Ann. Math. 146, 647–691 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Reznick, B.: Extremal PSD forms with few terms. Duke Math. J. 45, 363–374 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ruzhansky, M., Sugimoto, M.: On global inversion of homogenous maps. Bull. Math. Sci. 5(1), 13–18 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Samuelson, P.A.: Prices of factors and goods in general equilibrium. Rev. Econ. Stud. 21(1), 1–20 (1953)

    Article  Google Scholar 

  46. Sturmfels, B.: Polynomial equations and convex polytopes. Am. Math. Mon. 105, 907–922 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Thang, N.T.: Bifurcation set, M-tameness, asymptotic critical values and Newton polyhedrons. Kodai Math. J. 36, 77–90 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. van den Essen, A.: To believe or not to believe: the Jacobian conjecture. Rendiconti del Seminario Matematico Universitè Politecnico di Torino 55(4), 283–290 (1997)

    MathSciNet  MATH  Google Scholar 

  49. van den Essen, A.: Polynomial Automorphisms and the Jacobian Conjecture. Progress in Mathematics, vol. 190. Birkhäuser, Basel (2000)

  50. Wang, S.: Jacobian criterion for separability. J. Algebra 21, 453–494 (1980)

  51. Wright, D.: The Jacobian Conjecture: Ideal Membership Questions and Recent Advances. Contemporary Mathematics, vol. 369 (2005)

  52. Yagzhev, A.V.: On Keller’s problem. Sib. Math. J. 21, 747–754 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Yu. Nesterov and V. Shikhman for pointing out the importance of the invariance of coercivity under linear transformations, and for other fruitful discussions on the subject of this article. The authors also wish to thank an anonymous referee for substantial remarks which significantly improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Bajbar.

A Appendix

A Appendix

1.1 A.1 Proof of Lemma 1

For any \(\bar{v}\in {{\mathrm{vert}}}(P+P)\) there exists a vector \(a\in \mathbb {R}^n{\setminus }\{0\}\) such that \(\bar{v}\) is the unique optimal point of the problem

$$\begin{aligned} \text {(LP1)}\quad \max _{v\in P+P}a^Tv. \end{aligned}$$

Let \(\bar{w}\in {{\mathrm{vert}}}(P)\) be an optimal point of the problem

$$\begin{aligned} \text {(LP2)}\quad \max _{w\in P}a^Tw. \end{aligned}$$

Since

$$\begin{aligned} \max _{v\in P+P}a^Tv= & {} \max _{(x,y)\in P\times P}a^T(x+y)=\max _{x\in P}a^Tx+\max _{y\in P}a^Ty\nonumber \\= & {} 2\max _{x\in P}a^Tx=2a^T\bar{w}=a^T2\bar{w} \end{aligned}$$
(A.1)

holds, the point \(2\bar{w}\in 2{{\mathrm{vert}}}(P)\) is an optimal point of (LP1). A a was chosen such that \(\bar{v}\) is the unique optimal point of (LP1), one obtains \(\bar{v}=2\bar{w}\) with \(\bar{w}\in {{\mathrm{vert}}}(P)\).

On the other hand, choose \(\bar{w}\in {{\mathrm{vert}}}(P)\) and put \(\bar{v}=2\bar{w}\). To show is \(\bar{v}\in {{\mathrm{vert}}}(P+P)\). Observe that there exists some \(a\in \mathbb {R}^n{\setminus }\{0\}\) such that \(\bar{w}\) is the unique optimal point of the problem (LP2). Using (A.1), the point \(\bar{v}\) is thus an optimal point of (LP1). Assume that \(\bar{v}\notin {{\mathrm{vert}}}(P+P)\) holds. Since (LP1) must possess a vertex solution, there exists an optimal point \(\bar{z}:=\bar{x}+\bar{y}\in P+P\) of (LP1) with \(\bar{v}\not =\bar{z}\). For the point \(\bar{u}:=\textstyle {\frac{1}{2}}(\bar{x}+\bar{y})\in P\) we obtain the identity

$$\begin{aligned} a^T\bar{u}= \frac{1}{2}a^T\left( \bar{x}+\bar{y}\right) =\frac{1}{2}a^T\bar{z}=a^T\bar{w}, \end{aligned}$$

where the last equation holds since both \(\bar{z}\) and \(\bar{v}=2 \bar{w}\) are optimal for (LP1). The point \(\bar{u}\in P\) is thus an optimal point of the problem (LP2), and the uniqueness of \(\bar{w}\) implies \(\bar{w}=\bar{u}\). This leads to the contradiction \(\bar{v}=\bar{z}\), and thus the assertion \(\bar{v}\in {{\mathrm{vert}}}(P+P)\) follows. \(\square \)

1.2 A.2 Proof of Lemma 5

Let \(S_n\) denote the symmetric group on n elements, let \({{\mathrm{sign}}}(\sigma )\) denote the permutation sign of \(\sigma \in S_n\), and for some arbitrarily given \(x\in \mathbb {R}^n\) let the entries of JF(x) be denoted by \(a_{ij}\), \(i,j\in I\). Then the Leibniz formula for determinants yields

$$\begin{aligned} \det JF(x)=\sum _{\sigma \in S_n}{{\mathrm{sign}}}(\sigma )\prod _{i\in I} a_{i,\sigma (i)} \end{aligned}$$

with

$$\begin{aligned} a_{i,\sigma (i)}=\frac{\partial }{\partial x_{\sigma (i)}}F_i(x) =\sum _{\alpha ^i\in A(F_i)}(F_i)_{\alpha ^i}\,\frac{\partial }{\partial x_{\sigma (i)}}x^{\alpha ^i} \end{aligned}$$

for all \(\sigma \in S_n\) and \(i\in I\). Interchanging multiplication and addition, and splitting the appearing products, further leads to

$$\begin{aligned} \prod _{i\in I} a_{i,\sigma (i)}= \sum _{(\alpha ^1,\ldots ,\alpha ^n)\in A(F_1)\times \dots \times A(F_n)}\left[ \prod _{i\in I}(F_i)_{\alpha ^i}\right] \cdot \left[ \prod _{i\in I}\frac{\partial }{\partial x_{\sigma (i)}}x^{\alpha ^i}\right] \end{aligned}$$

for all \(\sigma \in S_n\). In fact, in the above summation for any \(i\in I\) it is sufficient to choose \(\alpha ^i\in A(F_i)\) with \(\alpha ^i_{\sigma (i)}\ge 1\), since the existence of some \(j\in I\) with \(\alpha ^j_{\sigma (j)}=0\) means that the monomial \(x^{\alpha ^j}\) does not depend on the variable \(x_{\sigma (j)}\), resulting in

$$\begin{aligned} \frac{\partial }{\partial x_{\sigma (j)}}x^{\alpha ^j}= 0\quad \text {and}\quad \prod _{i\in I}\frac{\partial }{\partial x_{\sigma (i)}}x^{\alpha ^i}=0. \end{aligned}$$

This shows

$$\begin{aligned} \prod _{i\in I} a_{i,\sigma (i)}=\sum _{\begin{array}{c} \alpha ^i\in A(F_i),\,i\in I\\ \alpha ^i_{\sigma (i)}\ge 1,\,i\in I \end{array}}\left[ \prod _{i\in I}(F_i)_{\alpha ^i}\right] \cdot \left[ \prod _{i\in I}\frac{\partial }{\partial x_{\sigma (i)}}x^{\alpha ^i}\right] \end{aligned}$$

for all \(\sigma \in S_n\).

Next, for any \((\alpha ^1,\ldots ,\alpha ^n)\) in the above summation and any \(i\in I\) we have

$$\begin{aligned} \frac{\partial }{\partial x_{\sigma (i)}}x^{\alpha ^i}= \alpha ^i_{\sigma (i)}x^{\alpha ^i_{\sigma (i)}-1}_{\sigma _i}\prod _{j\ne i}x^{\alpha ^j_{\sigma (j)}}_{\sigma (j)} \end{aligned}$$

and, since \(\sigma \) is a permutation,

$$\begin{aligned} \prod _{i\in I}\frac{\partial }{\partial x_{\sigma (i)}}x^{\alpha ^i} =\left[ \prod _{i\in I}\alpha ^i_{\sigma (i)}\right] \cdot x^{\sum _{i\in I}\alpha ^i-\mathbbm {1}}. \end{aligned}$$

We arrive at

$$\begin{aligned} \prod _{i\in I} a_{i,\sigma (i)}= & {} \sum _{\begin{array}{c} \alpha ^i\in A(F_i),\,i\in I\\ \alpha ^i_{\sigma (i)}\ge 1,\,i\in I \end{array}}\left[ \prod _{i\in I}(F_i)_{\alpha ^i}\right] \cdot \left[ \prod _{i\in I}\alpha ^i_{\sigma (i)}\right] \cdot x^{\sum _{i\in I}\alpha ^i-\mathbbm {1}}\\= & {} \sum _{\begin{array}{c} \alpha ^i\in A(F_i),\,i\in I\\ \alpha ^i_{\sigma (i)}\ge 1,\,i\in I \end{array}}\left[ \prod _{i\in I}\alpha ^i_{\sigma (i)}\right] \cdot m(\alpha ^1,\ldots ,\alpha ^n,x) \end{aligned}$$

for all \(\sigma \in S_n\), where the monomial

$$\begin{aligned} m(\alpha ^1,\ldots ,\alpha ^n,x):=\left[ \prod _{i\in I}(F_i)_{\alpha ^i}\right] \cdot x^{\sum _{i\in I}\alpha ^i-\mathbbm {1}} \end{aligned}$$

does not depend on \(\sigma \). Hence, we may write

$$\begin{aligned} \det JF(x)= & {} \sum _{\sigma \in S_n}{{\mathrm{sign}}}(\sigma )\sum _{\begin{array}{c} \alpha ^i\in A(F_i),\,i\in I\\ \alpha ^i_{\sigma (i)}\ge 1,\,i\in I \end{array}}\left[ \prod _{i\in I}\alpha ^i_{\sigma (i)}\right] \cdot m(\alpha ^1,\ldots ,\alpha ^n,x)\\= & {} \sum _{\begin{array}{c} \alpha ^i\in A(F_i),\,i\in I \end{array}}\sum _{\begin{array}{c} \sigma \in S_n\\ \alpha ^i_{\sigma (i)}\ge 1,\,i\in I \end{array}}{{\mathrm{sign}}}(\sigma )\cdot \left[ \prod _{i\in I}\alpha ^i_{\sigma (i)}\right] \cdot m(\alpha ^1,\ldots ,\alpha ^n,x). \end{aligned}$$

In the latter outer summation it suffices to consider \(\alpha ^i\in A(F_i)\), \(i\in I\), with \(\sum _{i\in I}\alpha ^i\ge \mathbbm {1}\), since otherwise there would exist some \(j\in I\) with \(\alpha ^i_j=0\) for all \(i\in I\), resulting in \(\alpha ^{\sigma ^{-1}(j)}_j=0\) for any \(\sigma \in S_n\). However, then the inner summation would be taken over the empty set.

After introducing this restriction on the outer summation, we may drop the constraint \(\alpha ^i_{\sigma (i)}\ge 1\), \(i\in I\), in the inner summation since, for given \(\sigma \in S_n\), its violation leads to a vanishing product \(\prod _{i\in I}\alpha ^i_{\sigma (i)}\). Thus we have shown the assertion

$$\begin{aligned} \det JF(x)= & {} \sum _{\begin{array}{c} \alpha ^i\in A(F_i),\,i\in I\\ \sum _{i\in I}\alpha ^i\ge \mathbbm {1} \end{array}}\sum _{\sigma \in S_n}{{\mathrm{sign}}}(\sigma )\cdot \left[ \prod _{i\in I}\alpha ^i_{\sigma (i)}\right] \cdot m(\alpha ^1,\ldots ,\alpha ^n,x)\\= & {} \sum _{\begin{array}{c} \alpha ^i\in A(F_i),\,i\in I\\ \sum _{i\in I}\alpha ^i\ge \mathbbm {1} \end{array}}\det (\alpha ^1,\ldots ,\alpha ^n)\cdot m(\alpha ^1,\ldots ,\alpha ^n,x), \end{aligned}$$

where the final identity is due to the Leibniz formula for determinants. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajbar, T., Stein, O. On globally diffeomorphic polynomial maps via Newton polytopes and circuit numbers. Math. Z. 288, 915–933 (2018). https://doi.org/10.1007/s00209-017-1920-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1920-1

Keywords

Mathematics Subject Classification

Navigation