×

Drying paint: from micro-scale dynamics to mechanical instabilities. (English) Zbl 1404.76026

Summary: Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarize the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients in a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle X-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities – shear-banding and fracture – can be controlled.

MSC:

76A20 Thin fluid films
82D60 Statistical mechanics of polymers

References:

[1] Buscall R, White LR. (1987) The consolidation of concentrated suspensions part 1. the theory of sedimentation. J. Chem. Soc. Farad. Trans. 83, 873-891. (doi:10.1039/f19878300873) · doi:10.1039/f19878300873
[2] Bacchin P, Aimar P. (2010)Concentrated phases of colloids or nanoparticles: solid pressure and dynamics of concentration processes. In Nano-science: colloidal background (ed. V Starov). Boca Raton, FL: CRC Press.
[3] Peppin SSL, Worster MG, Wettlaufer JS. (2007) Morphological instability in freezing colloidal suspensions. Proc. R. Soc. A 463, 723-733. (doi:10.1098/rspa.2006.1790) · Zbl 1131.80008 · doi:10.1098/rspa.2006.1790
[4] Daubersies L, Leng J, Salmon JB. (2012) Confined drying of a complex fluid drop: phase diagram, activity, and mutual diffusion coefficient. Soft Matter 8, 5923-5932. (doi:10.1039/c2sm25500f) · doi:10.1039/c2sm25500f
[5] Baldwin KA, Granjard M, Willmer DI, Sefiane K, Fairhurst DJ. (2011) Drying and deposition of poly(ethylene oxide) droplets determined by péclet number. Soft Matter 7, 7819. (doi:10.1039/c1sm05220a) · doi:10.1039/c1sm05220a
[6] Kynch GJ. (1952) A theory of sedimentation. Trans. Farad. Soc. 48, 166-176. (doi:10.1039/tf9524800166) · doi:10.1039/tf9524800166
[7] Biot MA. (1941) General theory of three-dimensional consolidation. J. App. Phys. 12, 155-164. (doi:10.1063/1.1712886) · JFM 67.0837.01 · doi:10.1063/1.1712886
[8] Peppin SSL, Elliott JA, Worster MG. (2005) Pressure and relative motion in colloidal suspensions. Phys. Fluids 17, 053301. (doi:10.1063/1.1915027) · Zbl 1187.76409 · doi:10.1063/1.1915027
[9] Peppin SSL, Elliott JAW, Worster MG. (2006) Solidification of colloidal suspensions. J. Fluid Mech. 554, 147-166. (doi:10.1017/S0022112006009268) · Zbl 1090.76072 · doi:10.1017/S0022112006009268
[10] Goehring L, Nakahara A, Dutta T, Kitsunezaki S, Tarafdar S. (2015) Desiccation cracks and their patterns: formation and modelling in science and nature. Singapore: Wiley-VCH.
[11] Schöpe HJ, Bryant G, van Megen W. (2006) Two-step crystallization kinetics in colloidal hard-sphere systems. Phys. Rev. Lett. 96, 175701. (doi:10.1103/PhysRevLett.96.175701) · doi:10.1103/PhysRevLett.96.175701
[12] Marín AG, Gelderblom H, Lohse D, Snoeijer JH. (2011) Order-to-disorder transition in ring-shaped colloidal stains. Phys. Rev. Lett. 107, 085502. (doi:10.1103/PhysRevLett.107.085502) · doi:10.1103/PhysRevLett.107.085502
[13] Cabane B, Li J, Artzner F, Botet R, Labbez C, Bareigts G, Sztucki M, Goehring L. (2016) Hiding in plain view: colloidal self-assembly from polydisperse populations. Phys. Rev. Lett. 116, 208001. (doi:10.1103/PhysRevLett.116.208001) · doi:10.1103/PhysRevLett.116.208001
[14] Ziane N, Salmon JB. (2015) Solidification of a charged colloidal dispersion investigated using microfluidic pervaporation. Langmuir 31, 7943-7952. (doi:10.1021/acs.langmuir.5b01563) · doi:10.1021/acs.langmuir.5b01563
[15] Inasawa S, Yamaguchi Y. (2009) Formation of optically anisotropic films from spherical colloidal particles. Langmuir 25, 11 197-11 201. (doi:10.1021/la901642b) · doi:10.1021/la901642b
[16] Yamaguchi K, Inasawa S, Yamaguchi Y. (2013) Optical anisotropy in packed isotropic spherical particles: indication of nanometer scale anisotropy in packing structure. Phys. Chem. Chem. Phys. 15, 2897-2902. (doi:10.1039/c2cp43402d) · doi:10.1039/c2cp43402d
[17] Boulogne F, Pauchard L, Giorgiutti-Dauphiné F, Botet R, Schweins R, Sztucki M, Li J, Cabane B, Goehring L. (2014) Structural anisotropy of directionally dried colloids. Europhys. Lett. 105, 38005. (doi:10.1209/0295-5075/105/38005) · doi:10.1209/0295-5075/105/38005
[18] Goehring L, Clegg WJ, Routh AF. (2013) Plasticity and fracture in drying colloidal films. Phys. Rev. Lett. 110, 024301. (doi:10.1103/PhysRevLett.110.024301) · doi:10.1103/PhysRevLett.110.024301
[19] Kiatkirakajorn PC, Goehring L. (2015) Formation of shear bands in drying colloidal dispersions. Phys. Rev. Lett. 115, 088302. (doi:10.1103/PhysRevLett.115.088302) · doi:10.1103/PhysRevLett.115.088302
[20] Yang B, Sharp JS, Smith M. (2015) Shear banding in drying films of colloidal nanoparticles. ACS Nano 9, 4077-4084. (doi:10.1021/acsnano.5b00127) · doi:10.1021/acsnano.5b00127
[21] Nakahara A, Matsuo Y. (2006) Imprinting memory into paste to control crack formation in drying process. J. Stat. Mech.: Theory Exp. 2006, P07016. (doi:10.1088/1742-5468/2006/07/P07016) · doi:10.1088/1742-5468/2006/07/P07016
[22] Nakayama H, Matsuo Y, Takeshi O, Nakahara A. (2013) Position control of desiccation cracks by memory effect and Faraday waves. Eur. Phys. J. E 36, 13 001-13 008. (doi:10.1140/epje/i2013-13001-8) · doi:10.1140/epje/i2013-13001-8
[23] Kitsunezaki S, Nakahara A, Matsuo Y. (2016) Shaking-induced stress anisotropy in the memory effect of paste. Europhys. Lett. 114, 64002. (doi:10.1209/0295-5075/114/64002) · doi:10.1209/0295-5075/114/64002
[24] Allain C, Limat L. (1995) Regular patterns of cracks formed by directional drying of a colloidal suspension. Phys. Rev. Lett. 74, 2981-2984. (doi:10.1103/PhysRevLett.74.2981) · doi:10.1103/PhysRevLett.74.2981
[25] Dufresne ER et al. (2003) Dynamics of fracture in drying suspensions. Phys. Rev. Lett. 91, 224501. (doi:10.1103/PhysRevLett.91.224501) · doi:10.1103/PhysRevLett.91.224501
[26] Dufresne ER, Stark DJ, Greenblatt NA, Cheng JX, Hutchinson JW, Mahadevan L, Weitz DA. (2006) Flow and fracture in drying nanoparticle suspensions. Langmuir 22, 7144-7147. (doi:10.1021/la061251) · doi:10.1021/la061251
[27] Daubersies L, Salmon JB. (2011) Evaporation of solutions and colloidal dispersions in confined droplets. Phys. Rev. E 84, 021406.
[28] Giorgiutti-Dauphiné F, Pauchard L. (2013) Direct observation of concentration profiles induced by drying of a 2d colloidal dispersion drop. J. Colloid Interface Sci. 395, 263-268. (doi:10.1016/j.jcis.2012.11.019) · doi:10.1016/j.jcis.2012.11.019
[29] Gauthier G, Lazarus V, Pauchard L. (2007) Alternating crack propagation during directional drying. Langmuir 23, 4715-4718. (doi:10.1021/la063702w) · doi:10.1021/la063702w
[30] Gauthier G, Lazarus V, Pauchard L. (2010) Shrinkage star-shaped cracks: explaining the transition from 90 degrees to 120 degrees. Europhys. Lett. 89, 26002. (doi:10.1209/0295-5075/89/26002) · doi:10.1209/0295-5075/89/26002
[31] Lidon P, Salmon JB. (2014) Dynamics of unidirectional drying of colloidal dispersions. Soft Matter 10, 4151-4161. (doi:10.1039/c3sm52528g) · doi:10.1039/c3sm52528g
[32] Ziane N, Guirardel M, Leng J, Salmon JB. (2015) Drying with no concentration gradient in large microfluidic droplets. Soft Matter 11, 3637-3642. (doi:10.1039/C5SM00299K) · doi:10.1039/C5SM00299K
[33] Selva B, Daubersies L, Salmon JB. (2012) Solutal convection in confined geometries: Enhancement of colloidal transport. Phys. Rev. Lett. 108, 198303. (doi:10.1103/PhysRevLett.108.198303) · doi:10.1103/PhysRevLett.108.198303
[34] Landman KA, White LR. (1992) Determination of the hindered settling factor for flocculated suspensions. AIChE J. 38, 184-192. (doi:10.1002/aic.690380203) · doi:10.1002/aic.690380203
[35] Russel WB, Saville DA, Schowalter WR. (1989) Colloidal dispersions. Cambridge, UK: Cambridge University Press.
[36] Bonnet-Gonnet C, Belloni L, Cabane B. (1994) Osmotic pressure of latex dispersions. Langmuir 10, 4012-4021. (doi:10.1021/la00023a019) · doi:10.1021/la00023a019
[37] Gromer A, Nassar M, Thalmann F, Hébraud P, Holl Y. (2015) Simulation of latex film formation using a cell model in real space: vertical drying. Langmuir 31, 10 983-10 994. (doi:10.1021/acs.langmuir.5b02845) · doi:10.1021/acs.langmuir.5b02845
[38] Carnahan NF, Starling KE. (1969) Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635-636. (doi:10.1063/1.1672048) · doi:10.1063/1.1672048
[39] Hall KR. (1972) Another hard-sphere equation of state. J. Chem. Phys. 57, 2252-2254. (doi:10.1063/1.1678576) · doi:10.1063/1.1678576
[40] Goehring L, Clegg WJ, Routh AF. (2010) Solidification and ordering during directional drying of a colloidal dispersion. Langmuir 26, 9269-9275. (doi:10.1021/la100125v) · doi:10.1021/la100125v
[41] Alexander S, Chaikin PM, Grant P, Morales GJ, Pincus P, Hone D. (1984) Charge renormailzation, osmotic pressure, and bulk modulus of colloidal crystals: theory. J. Chem. Phys. 80, 5776-5781. (doi:10.1063/1.446600) · doi:10.1063/1.446600
[42] Belloni L. (1998) Ionic condensation and charge renormalization in colloidal suspensions. Colloids Surf. A 140, 227-243. (doi:10.1016/S0927-7757(97)00281-1) · doi:10.1016/S0927-7757(97)00281-1
[43] Trizac E, Bocquet L, Aubouy M, von Grünberg HH. (2003) Alexander’s prescription for colloidal charge renormalization. Langmuir 19, 4027-4033. (doi:10.1021/la027056m) · doi:10.1021/la027056m
[44] Jönsson B, Persello J, Li J, Cabane B. (2011) Equation of state of colloidal dispersions. Langmuir 27, 6606-6614. (doi:10.1021/la2001392) · doi:10.1021/la2001392
[45] Goertz V, Dingenouts N, Nirschl H. (2009) Comparison of nanometric particle size distributions as determined by SAXS, TEM and analytical ultracentrifuge. Part. Part. Syst. Charact. 26, 17-24. (doi:10.1002/ppsc.200800002) · doi:10.1002/ppsc.200800002
[46] Torres A, Téllez G, van Roij R. (2008) The polydisperse cell model: nonlinear screening and charge renormalization in colloidal mixtures. J. Chem. Phys. 128, 154906. (doi:10.1063/1.2907719) · doi:10.1063/1.2907719
[47] Allahyarov E, Löwen H. (2009) Nonadditivity in the effective interactions of binary charged colloidal suspensions. J. Phys. Condens. Matter 21, 424117. (doi:10.1088/0953-8984/21/42/424117) · doi:10.1088/0953-8984/21/42/424117
[48] Reus V, Belloni L, Zemb T, Lutterbach N, Versmold H. (1997) Equation of state and structure of electrostatic colloidal crystals: osmotic pressure and scattering study. J. Phys. II France 7, 603-626. (doi:10.1051/jp2:1997142) · doi:10.1051/jp2:1997142
[49] Li J, Turesson M, Haglund CA, Cabane B, Skepö M. (2015) Equation of state of PEG/PEO in good solvent. Comparison between a one-parameter {EOS} and experiments. Polymer 80, 205-213.
[50] Bergna HE, Roberts WO (eds)(2005) Colloidal silica: fundamentals and applications. London, UK: Taylor and Francis.
[51] Iler RK (ed.)(1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. New York, NY: Wiley.
[52] Bolt GH. (1957) Determination of the charge density of silica sols. J. Phys. Chem. 61, 1166-1169. (doi:10.1021/j150555a007) · doi:10.1021/j150555a007
[53] Persello J. (2000)Surface and interface structure of silicas. In Adsorption on silica surfaces (ed. E Papirer), ch. 10. New York, NY: Marcel Dekker.
[54] Hallez Y, Diatta J, Meireles M. (2014) Quantitative assessment of the accuracy of the Poisson-Boltzmann cell model for salty dispersions. Langmuir 30, 6721-6729. (doi:10.1021/la501265k) · doi:10.1021/la501265k
[55] Li J, Cabane B, Sztucki M, Gummel J, Goehring L. (2012) Drying dip-coated colloidal films. Langmuir 28, 200-208. (doi:10.1021/la203549g) · doi:10.1021/la203549g
[56] Loussert C, Bouchaudy A, Salmon JB. (2016) Drying dynamics of a charged colloidal dispersion in a confined drop. Phys. Rev. Fluids 1, 084201. (doi:10.1103/PhysRevFluids.1.084201) · doi:10.1103/PhysRevFluids.1.084201
[57] Hull D, Caddock BD. (1999) Simulation of prismatic cracking of cooling basalt lava flows by the drying of sol-gels. J. Mat. Sci. 34, 5707-5720. (doi:10.1023/A:1004793731308) · doi:10.1023/A:1004793731308
[58] Berteloot G, Hoang A, Daerr A, Kavehpour HP, Lequeux F, Limat L. (2012) Evaporation of a sessile droplet: inside the coffee stain. J. Colloid Interface Sci. 370, 155-161. (doi:10.1016/j.jcis.2011.10.053) · doi:10.1016/j.jcis.2011.10.053
[59] Healy TW. (2006)Stability of aqueous silica sols. In Colloidal silica. Fundamentals and applications (eds HE Bergna, WO Roberts), pp. 247-252. London, UK: Taylor and Francis.
[60] Man W, Russel WB. (2008) Direct measurements of critical stresses and cracking in thin films of colloid dispersions. Phys. Rev. Lett. 100, 198302. (doi:10.1103/PhysRevLett.100.198302) · doi:10.1103/PhysRevLett.100.198302
[61] Zhang J, Sun Z, Yang B. (2009) Self-assembly of photonic crystals from polymer colloids. Curr. Opin. Colloid Interface Sci. 14, 103-114. (doi:10.1016/j.cocis.2008.09.001) · doi:10.1016/j.cocis.2008.09.001
[62] Juillerat F, Bowen P, Hofmann H. (2006) Formation and drying of colloidal crystals using nanosized silica particles. Langmuir 22, 2249-2257. (doi:10.1021/la052304a) · doi:10.1021/la052304a
[63] Nam KH, Park IH, Ko SH. (2012) Patterning by controlled cracking. Nature 485, 221-224. (doi:10.1038/nature11002) · doi:10.1038/nature11002
[64] Kim BC, Matsuoka T, Moraes C, Huang J, Thouless M, Takayama S. (2013) Guided fracture of films on soft substrates to create micro/nano-feature arrays with controlled periodicity. Sci. Rep. 3, 221-224. (doi:10.1038/srep03027) · doi:10.1038/srep03027
[65] Seghir R, Arscott S. (2015) Controlled mud-crack patterning and self-organized cracking of polydimethylsiloxane elastomer surfaces. Sci. Rep. 5, 14787. (doi:10.1038/srep14787) · doi:10.1038/srep14787
[66] Nandakishore P, Goehring L. (2016) Crack patterns over uneven substrates. Soft Matter 12, 2253-2263. (doi:10.1039/C5SM02389K) · doi:10.1039/C5SM02389K
[67] Pauchard L, Adda-Bedia M, Allain C, Couder Y. (2003) Morphologies resulting from the directional propagation of fractures. Phys. Rev. E 67, 027103. (doi:10.1103/PhysRevE.67.027103) · doi:10.1103/PhysRevE.67.027103
[68] Lawn BR. (1993) Fracture of brittle solids, 2nd edn. Cambridge, UK: Cambridge University Press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.