Skip to main content
Log in

Position control of desiccation cracks by memory effect and Faraday waves

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Pattern formation of desiccation cracks on a layer of a calcium carbonate paste is studied experimentally. This paste is known to exhibit a memory effect, which means that a short-time application of horizontal vibration to the fresh paste predetermines the direction of the cracks that are formed after the paste is dried. While the position of the cracks (as opposed to their direction) is still stochastic in the case of horizontal vibration, the present work reports that their positioning is also controllable, at least to some extent, by applying vertical vibration to the paste and imprinting the pattern of Faraday waves, thus breaking the translational symmetry of the system. The experiments show that the cracks tend to appear in the node zones of the Faraday waves: in the case of stripe-patterned Faraday waves, the cracks are formed twice more frequently in the node zones than in the anti-node zones, presumably due to the localized horizontal motion. As a result of this preference of the cracks to the node zones, the memory of the square lattice pattern of Faraday waves makes the cracks run in the oblique direction differing by 45 degrees from the intuitive lattice direction of the Faraday waves.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. H.J. Herrmann, S. Roux, Statistical Models for the Fracture in Disordered Media (North-Holland, Amsterdam, 1990).

  2. B. Lawn, Fracture of Brittle Solids, 2nd edition (Cambridge University Press, Cambridge, 1993).

  3. A.N. Kolmogoroff, Dokl. Akad. Nauk SSSR 31, 99 (1941).

    MathSciNet  Google Scholar 

  4. L. Oddershede, P. Dimon, J. Bohr, Phys. Rev. Lett. 71, 3107 (1993).

    Article  ADS  Google Scholar 

  5. H.J. Herrmann, F.K. Wittel, F. Kun, Physica A 371, 59 (2006).

    Article  ADS  Google Scholar 

  6. A. Yuse, M. Sano, Nature 362, 329 (1993).

    Article  ADS  Google Scholar 

  7. M. Marder, Phys. Rev. E 49, R51 (1994).

    Article  ADS  Google Scholar 

  8. Y. Hayakawa, Phys. Rev. E 49, R1804 (1994).

    Article  ADS  Google Scholar 

  9. S.-I. Sasa, K. Sekimoto, H. Nakanishi, Phys. Rev. E 50, R1733 (1994).

    Article  ADS  Google Scholar 

  10. A. Groisman, E. Kaplan, Europhys. Lett. 25, 415 (1994).

    Article  ADS  Google Scholar 

  11. Y. Bréchet, D. Bellet, Z. Neda, Solid State Phenom. 42-43, 247 (1995).

    Article  Google Scholar 

  12. C. Allain, L. Limat, Phys. Rev. Lett. 74, 2981 (1995).

    Article  ADS  Google Scholar 

  13. T.S. Komatsu, S. Sasa, Jpn. J. Appl. Phys. 36, 391 (1997).

    Article  ADS  Google Scholar 

  14. S. Kitsunezaki, Phys. Rev. E 60, 6449 (1999).

    Article  ADS  Google Scholar 

  15. H. Colina, S. Roux, Eur. Phys. J. E 1, 189 (2000).

    Article  Google Scholar 

  16. N. Lecocq, N. Vandewalle, Eur. Phys. J. E 8, 445 (2002).

    Google Scholar 

  17. D. Mal, S. Sinha, T.R. Middya, S. Tarafdar, Physica A 384, 182 (2007).

    Article  ADS  Google Scholar 

  18. L. Pauchard, F. Elias, P. Boltenhagen, A. Cebers, J.C. Bacri, Phys. Rev. E 77, 021402 (2008).

    Article  ADS  Google Scholar 

  19. A.T. Ngo, J. Ricardi, M.P. Pileni, Nano Lett. 8, 2485 (2008).

    Article  ADS  Google Scholar 

  20. A.T. Ngo, J. Ricardi, M.P. Pileni, J. Phys. Chem. B 112, 14409 (2008).

    Article  Google Scholar 

  21. A. Nakahara, Y. Matsuo, J. Phys. Soc. Jpn. 74, 1362 (2005).

    Article  ADS  Google Scholar 

  22. A. Nakahara, Y. Matsuo, J. Stat. Mech.: Theory Exp., P07016 (2006).

  23. A. Nakahara, Y. Matsuo, Phys. Rev. E 74, 045102 (2006).

    Article  ADS  Google Scholar 

  24. Desiccation cracks, Phys. Today, 60, No. 9. (2007) 116.

  25. S. Kitsunezaki, J. Phys. Soc. Jpn. 78, 064801 (2009).

    Article  ADS  Google Scholar 

  26. S. Kitsunezaki, J. Phys. Soc. Jpn. 79, 124802 (2010).

    Article  ADS  Google Scholar 

  27. S. Kitsunezaki, Adv. Powder Tech. 22, 311 (2011).

    Article  Google Scholar 

  28. Ooshida Takeshi, K. Sekimoto, Phys. Rev. Lett. 95, 108301 (2005).

    Article  ADS  Google Scholar 

  29. M. Otsuki, Phys. Rev. E 72, 046115 (2005).

    Article  ADS  Google Scholar 

  30. Ooshida Takeshi, Phys. Rev. E 77, 061501 (2008).

    Article  ADS  Google Scholar 

  31. Ooshida Takeshi, J. Phys. Soc. Jpn. 78, 104801 (2009).

    Article  ADS  Google Scholar 

  32. Ooshida Takeshi, Susumu Goto, Takeshi Matsumoto, Akio Nakahara, Michio Otsuki, J. Phys. Soc. Jpn. 80, 074007 (2011).

    Article  ADS  Google Scholar 

  33. Akio Nakahara, Yuu Shinohara, Yousuke Matsuo, J. Phys.: Conf. Ser. 319, 012014 (2011).

    Article  ADS  Google Scholar 

  34. Y. Matsuo, A. Nakahara, J. Phys. Soc. Jpn. 81, 024801 (2012).

    Article  ADS  Google Scholar 

  35. M. Faraday, Philos. Trans. R. Soc. London 52, 299 (1831).

    Article  Google Scholar 

  36. T.B. Benjamin, F. Ursell, Philos. Trans. R. Soc. London, Ser. A 255, 505 (1954).

    Article  MathSciNet  ADS  Google Scholar 

  37. J. Miles, D. Henderson, Annu. Rev. Fluid Mech. 22, 143 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  38. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  Google Scholar 

  39. K. Kumar, L.S. Tuckerman, J. Fluid Mech. 279, 49 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. W.S. Edwards, S. Fauve, J. Fluid Mech. 278, 123 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Kudroli, J.P. Gollub, Physica D 97, 133 (1996).

    Article  Google Scholar 

  42. F. Melo, P.B. Umbanhowar, H.L. Swinney, Phys. Rev. Lett. 72, 172 (1994).

    Article  ADS  Google Scholar 

  43. F. Melo, P.B. Umbanhowar, H.L. Swinney, Phys. Rev. Lett. 75, 3838 (1995).

    Article  ADS  Google Scholar 

  44. P.B. Umbanhowar, F. Melo, H.L. Swinney, Nature 382, 793 (1996).

    Article  ADS  Google Scholar 

  45. J.M. Schleier-Smith, H.A. Stone, Phys. Rev. Lett. 86, 3016 (2001).

    Article  ADS  Google Scholar 

  46. Florian S. Merkt, Robert D. Deegan, Daniel I. Goldman, Erin C. Rericha, Harry L. Swinney, Phys. Rev. Lett. 92, 184501 (2004).

    Article  ADS  Google Scholar 

  47. H. Ebata, S. Tatsumi, M. Sano, Phys. Rev. E 79, 066308 (2009).

    Article  ADS  Google Scholar 

  48. L.D.B. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edition (Pergamon Press, Oxford, 1987).

  49. J.H. Calbeck, H.R. Harner, Ind. Eng. Chem. 19, 58 (1927).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Nakahara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, H., Matsuo, Y., Takeshi, O. et al. Position control of desiccation cracks by memory effect and Faraday waves. Eur. Phys. J. E 36, 1 (2013). https://doi.org/10.1140/epje/i2013-13001-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13001-8

Keywords

Navigation