×

The convergence of nonnegative solutions for the family of problems \(-\varDelta_p u= \lambda e^u\) as \(p \rightarrow \infty\). (English) Zbl 1404.35311

The paper is concerned with the problem \[ \begin{cases} -\Delta_pu=\lambda e^u, &\text{for }x\in\Omega,\\ u=0, &\text{for }x\in\partial\Omega,\end{cases}\tag{1} \] where \(\Omega\subset \mathbb{R}^N\) (\(N\geq 2\)) is a bounded domain with smooth boundary \(\partial \Omega\), \(p>N\), and \(\Delta_p=\text{div}(|\nabla|^{p-2}\nabla)\) is the \(p\)-Laplace operator. The authors prove the existence of a positive real number \(\lambda^*\) such that for each \(\lambda\in (0,\lambda^*)\) problem (1) has a nonnegative weak solution \(u_p\). The uniform convergence of \(u_p\) as \(p\to\infty\) to the distance function to the boundary of the domain is also shown.

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
35J62 Quasilinear elliptic equations
35D30 Weak solutions to PDEs
35D40 Viscosity solutions to PDEs
47J30 Variational methods involving nonlinear operators
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI

References:

[1] Adimurthi, F. Robert and M. Struwe, Concentration phenomena for Liouville’s equation in dimension four. J. Eur. Math. Soc. (JEMS)8 (2006) 171-180. · Zbl 1387.35198
[2] J.A. Aguilar Crespo and I. Peral Alonso, On an elliptic equation with exponential growth. Rend. Sem. Mat. Univ. Padova96 (1996) 143-175. · Zbl 0887.35055
[3] T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as p →∞ of _{Δp_{up = f}} and related extremal problems. Rend. Sem. Mat. Univ. Politec. Torino, special issue (1991) 15-68.
[4] M. Bocea and M. Mihăilescu, On a family of inhomogeneous torsional creep problems, Proc. Am. Math. Soc.145 (2017) 4397-4409. · Zbl 1387.35311 · doi:10.1090/proc/13583
[5] M. Bocea, M. Mihăilescu and D. Stancu−Dumitru, The limiting behavior of solutions to inhomogeneous eigenvalue problems in Orlicz−Sobolev spaces. Adv. Nonl. Stud.14 (2014) 977-990. · Zbl 1335.35173
[6] H. Brezis and F. Merle, Uniform esitmates and blow-up behavior for solutions of Δu = v(x)\^{}{eu in tow dimensions}. Commun. Partial Differ. Equ.16 (1992) 1223-1253. · Zbl 0746.35006 · doi:10.1080/03605309108820797
[7] F. Charroand E. Parini, Limits as p →∞ of p-Laplacian problemswith a superdiffusive power-type nonlinearity: Positive and sign-changing solutions. J. Math. Anal. Appl.372 (2010) 629-644. · Zbl 1198.35115 · doi:10.1016/j.jmaa.2010.07.005
[8] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations. Duke Math. J.63 (1991), 615-22. · Zbl 0768.35025 · doi:10.1215/S0012-7094-91-06325-8
[9] H. Fujita, On the nonlinear equation Δu + exp u = 0 and _{vt = Δu + exp u}. Bull. Amer. Math. Soc.75 (1969), 132-5. · Zbl 0216.12101 · doi:10.1090/S0002-9904-1969-12175-0
[10] N. Fukagai, M. Ito and K. Narukawa, Positive solutions of quasilinear elliptic equations with critical Orlicz−Sobolev nonlinearity on R\^{}{N}. Funkcial.Ekvac. 49 (2006) 235-267. · Zbl 1387.35405 · doi:10.1619/fesi.49.235
[11] J. GarciaAzozero and I. Peral Alonso On a Emden-Fowler type equation. Nonlinear Anal. T.M.A.18 (1992) 1085-1097. · Zbl 0781.35021 · doi:10.1016/0362-546X(92)90197-M
[12] J. Garcia Azozero, I. Peral Alonso and J.P. Puel, Quasilinear problems with exponential growth in the reaction term. Nonlinear Analysis T.M.A.22 (1994) 481-498. · Zbl 0804.35037 · doi:10.1016/0362-546X(94)90169-4
[13] Y.X. Huang, On the eigenvalues of the p-Laplacian with varying p. Proc. Amer. Math. Soc.125 (1997) 3347-3354. · Zbl 0882.35087 · doi:10.1090/S0002-9939-97-03961-0
[14] T. Ishibashi and S. Koike, On fully nonlinear PDE’s derived from variational problems of \^{}{Lp norms}. SIAM J. Math. Anal.33 (2001) 545-569. · Zbl 1030.35088 · doi:10.1137/S0036141000380000
[15] R. Jensen, Uniqueness of Lipschitz Extensions: Minimizing the Sup Norm of the Gradient. Arch. Rational Mech. Anal.123 (1993) 51-74. · Zbl 0789.35008 · doi:10.1007/BF00386368
[16] P. Juutinen, Minimization problems for Lipschitz functions via viscosity solutions. Thesis University of Jyvaskyla (1996) 1-39.
[17] P. Juutinen and P. Lindqvist, On the higher eigenvalues for the ∞-eigenvalue problem. Calc. Var. Partial Differ. Equ.23 (2005) 169-192. · Zbl 1080.35057 · doi:10.1007/s00526-004-0295-4
[18] P. Juutinen, P. Lindqvist and J.J. Manfredi, The ∞-eigenvalue problem. Arch. Rational Mech. Anal.148 (1999) 89-105. · Zbl 0947.35104 · doi:10.1007/s002050050157
[19] B. Kawohl, On a family of torsional creep problems. J. Reine Angew. Math.410 (1990) 1-22. · Zbl 0701.35015
[20] P. Lindqvist, On the equation div(|∇u\^{}{|p−2∇u) + λ|u\^{}{|p−2u = 0}}. Proc. Amer. Math. Soc.109 (1990) 157-164. · Zbl 0714.35029
[21] P. Lindqvist, On non-linear Rayleigh quotients. Potential Anal.2 (1993) 199-218. · Zbl 0795.35039 · doi:10.1007/BF01048505
[22] L.E. Payne and G.A. Philippin, Some applications of the maximum principle in the problem of torsional creep. SIAM J. Appl. Math.33 (1977) 446-455. · Zbl 0378.73028 · doi:10.1137/0133028
[23] M. Perez−Llanos and J.D. Rossi, The limit as p(x) →∞ of solutions to the inhomogeneous Dirichlet problem of p(x)-Laplacian. Nonl. Anal. T.M.A.73 (2010) 2027-2035. · Zbl 1196.35090 · doi:10.1016/j.na.2010.05.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.