×

Dirac-concentrations in an integro-PDE model from evolutionary game theory. (English) Zbl 1404.35242

Summary: Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Motivated by the existence of moving Dirac-concentrations in the time-dependent problem, we study the qualitative properties of steady states in the limit of small diffusion. Under different conditions on the growth rate and interaction kernel as motivated by the framework of adaptive dynamics, we will show that as the diffusion rate tends to zero the steady state concentrates (i) at a single location; (ii) at two locations simultaneously; or (iii) at one of two alternative locations. The third result in particular shows that solutions need not be unique. This marks an important difference of the non-local equation with its local counterpart.

MSC:

35K55 Nonlinear parabolic equations
35F21 Hamilton-Jacobi equations
92D15 Problems related to evolution
47G20 Integro-differential operators
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
Full Text: DOI

References:

[1] A. S. Ackleh; J. Cleveland; H. R. Thieme, Population dynamics under selection and mutation: Long-time behavior for differential equations in measure spaces, J. Differential Equations, 261, 1472-1505 (2016) · Zbl 1338.92093 · doi:10.1016/j.jde.2016.04.008
[2] G. Barles, An introduction to the theory of viscosity solutions for first-order Hamilton-Jacobi equations and applications, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, 49-109, Lecture Notes in Math., 2074, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013. · Zbl 1269.49043
[3] R. Bürger, Perturbations of positive semigroups and applications to population genetics, Math. Z., 197, 259-272 (1988) · Zbl 0618.47036 · doi:10.1007/BF01215194
[4] N. Champagnat; R. Ferrière; S. et Mèlèard, Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models, Theor. Popul. Biol., 69, 297-321 (2006) · Zbl 1118.92039 · doi:10.1016/j.tpb.2005.10.004
[5] R. Cressman; J. Hofbauer, Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics, Theor. Pop. Biol., 67, 47-59 (2005) · Zbl 1071.92025 · doi:10.1016/j.tpb.2004.08.001
[6] L. Desvillettes; P.-E. Jabin; S. Mischler; G. Raoul, On mutation-selection dynamics, Commun. Math. Sci., 6, 729-747 (2008) · Zbl 1176.45009 · doi:10.4310/CMS.2008.v6.n3.a10
[7] O. Diekmann, A beginner’s guide to adaptive dynamics, Banach Center Publications, 63, 47-86 (2004) · Zbl 1051.92032
[8] O. Diekmann; P.-E. Jabin; S. Mischler; B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Pop. Biol., 67, 257-271 (2005) · Zbl 1072.92035 · doi:10.1016/j.tpb.2004.12.003
[9] J. Dockery; V. Hutson; K. Mischaikow; M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37, 61-83 (1998) · Zbl 0921.92021 · doi:10.1007/s002850050120
[10] R. A. Fisher, The Genetical Theory of Natural Selection, Oxford University Press, Oxford, 1999. · JFM 56.1106.13
[11] W. Hao; K.-Y. Lam; Y. Lou, Concentration phenomena in an integro-PDE model for evolution of conditional dispersal, Indiana Univ. Math. J., 272, 1755-1790 (2017) · Zbl 1357.35275 · doi:10.1016/j.jfa.2016.11.017
[12] S. Gandon; S. Mirrahimi, A Hamilton-Jacobi method to describe the evolutionary equilibria in heterogeneous environments and with non-vanishing effects of mutations, Comptes Rendus Mathematique, 355, 155-160 (2016) · Zbl 1366.92104 · doi:10.1016/j.crma.2016.12.001
[13] A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theor. Pop. Biol., 24, 244-251 (1983) · Zbl 0526.92025 · doi:10.1016/0040-5809(83)90027-8
[14] J. Húska, Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains, J. Differential Equations, 226, 541-557 (2006) · Zbl 1102.35027 · doi:10.1016/j.jde.2006.02.008
[15] S. F. Iglesias and S. Mirrahimi, Long time evolutionary dynamics of phenotypically structured populations in time periodic environments, arXiv: 1803.03547 [math. AP]. · Zbl 1491.35272
[16] M. Kimura, A stochastic model concerning the maintenance of genetic variability in quantitative characters, Proc. Natl. Acad. Sci. USA, 54, 731-736 (1965) · Zbl 0137.14404 · doi:10.1073/pnas.54.3.731
[17] K.-Y. Lam; Y. Lou, Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal, Bull. Math. Biol., 76, 261-291 (2014) · Zbl 1402.92348 · doi:10.1007/s11538-013-9901-y
[18] K.-Y. Lam; Y. Lou, An integro-PDE model for evolution of random dispersal, J. Funct. Anal., 272, 1755-1790 (2017) · Zbl 1357.35275 · doi:10.1016/j.jfa.2016.11.017
[19] K. -Y. Lam, Stability of Dirac concentrations in an integro-PDE model for evolution of dispersal, Calc. Var. Partial Differential Equations, 56 (2017), Art. 79, 32pp. · Zbl 1379.35136
[20] G. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. · Zbl 0884.35001
[21] A. Lorz; S. Mirrahimi; B. Perthame, Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Diff. Equations, 36, 1071-1098 (2011) · Zbl 1229.35113 · doi:10.1080/03605302.2010.538784
[22] P. Magal; G. F. Webb, Mutation, selection, and recombination in a model of phenotype evolution, Discrete Cont. Dynam. Syst., 6, 221-236 (2000) · Zbl 1007.92027
[23] G. Meszèna; M. Gyllenberg; F. J. Jacobs; J. A. J. Metz, Link between population dynamics and dynamics of darwinian evolution, Phys. Rev. Lett., 95, 78-105 (2005)
[24] B. Perthame; P. E. Souganidis, Rare mutations limit of a steady state dispersal evolution model, Math. Model. Nat. Phenom., 11, 154-166 (2016) · Zbl 1387.35027 · doi:10.1051/mmnp/201611411
[25] M. V. Safonov; N. V. Krylov, A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat., 44, 161-175 (1980) · Zbl 0439.35023
[26] A. Sasaki, Clumped distribution by neighborhood competition, J. Theor. Biol., 186, 415-430 (1997)
[27] H. Smith and H. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, 118, American Mathematical Society, Providence, RI, 2011. · Zbl 1214.37002
[28] L. Sun; J. Shi; Y. Wang, Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation, Z. Angew. Math. Phys., 64, 1267-1278 (2013) · Zbl 1272.35121 · doi:10.1007/s00033-012-0286-9
[29] J. Wickman; S. Diehl; C. A. Kausmeier; A. B. Ryabov; A. Brännström, Determining selection across heterogeneous landscapes: A perturbation-based method and its application to modeling evolution in space, Am. Nat., 189, 381-395 (2017) · doi:10.1086/690908
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.