×

An integro-PDE model for evolution of random dispersal. (English) Zbl 1357.35275

Summary: We consider an integro-PDE model for a population structured by the spatial variables and a trait variable which is the diffusion rate. Competition for resource is local in spatial variables, but nonlocal in the trait variable. We focus on the asymptotic profile of positive steady state solutions. Our result shows that in the limit of small mutation rate, the solution remains regular in the spatial variables and yet concentrates in the trait variable and forms a Dirac mass supported at the lowest diffusion rate. A. Hastings [Theor. Popul. Biol. 24, 244–251 (1983; Zbl 0526.92025)] and J. Dockery et al. [J. Math. Biol. 37, No. 1, 61–83 (1998; Zbl 0921.92021)] showed that for two competing species in spatially heterogeneous but temporally constant environment, the slower diffuser always prevails, if all other things are held equal. Our result suggests that their findings may well hold for arbitrarily many or even a continuum of traits.

MSC:

35R09 Integro-partial differential equations
35B44 Blow-up in context of PDEs
35K57 Reaction-diffusion equations
92D15 Problems related to evolution
92D25 Population dynamics (general)

References:

[1] Alfaro, M.; Coville, J.; Raoul, G., Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypical trait, Comm. Partial Differential Equations, 38, 2126-2154 (2013) · Zbl 1284.35446
[2] Arnold, A.; Desvillettes, L.; Prévost, C., Existence of nontrivial steady states for populations structured with respect to space and a continuous trait, Commun. Pure Appl. Anal., 11, 83-96 (2012) · Zbl 1303.92091
[3] Berestycki, H.; Hamel, F.; Roques, L., Analysis of the periodically fragmented environment model. I. Species persistence, J. Math. Biol., 51, 1, 75-113 (2005) · Zbl 1066.92047
[4] Berestycki, H.; Nirenberg, L.; Varadhan, S. R.S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47, 47-92 (1994) · Zbl 0806.35129
[5] Bessonov, N.; Reinberg, N.; Volpert, V., Mathematics of Darwin’s diagram, Math. Model. Nat. Phenom., 9, 5-25 (2014) · Zbl 1321.92060
[6] Bouin, E.; Calvez, V., Travelling waves for the cane toads equation with bounded traits, Nonlinearity, 27, 2233-2253 (2014) · Zbl 1301.35187
[7] Bouin, E.; Calvez, V.; Meunier, N.; Mirrahimi, S.; Perthame, B.; Raoul, G.; Voituriez, R., Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration, C. R. Math. Acad. Sci. Paris, 350, 761-766 (2012) · Zbl 1253.35186
[8] Bouin, E.; Mirrahimi, S., A Hamilton-Jacobi limit for a model of population structured by space and trait, Commun. Math. Sci., 13, 1431-1452 (2015) · Zbl 1351.92040
[9] Bürger, R., Perturbations of positive semigroups and applications to population genetics, Math. Z., 197, 259-272 (1988) · Zbl 0618.47036
[10] Calsina, À.; Cuadrado, S., Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics, J. Math. Biol., 48, 135-159 (2004) · Zbl 1078.92051
[11] Cantrell, R. S.; Cosner, C., On the steady-state problem for the Volterra-Lotka competition model with diffusion, Houston J. Math., 13, 337-352 (1987) · Zbl 0644.92016
[12] Cantrell, R. S.; Cosner, C., Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology (2003), John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester · Zbl 1059.92051
[13] Diekmann, O.; Jabin, P.-E.; Mischler, S.; Perthame, B., The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67, 257-271 (2005) · Zbl 1072.92035
[14] Dockery, J.; Hutson, V.; Mischaikow, K.; Pernarowski, M., The evolution of slow dispersal rates: a reaction-diffusion model, J. Math. Biol., 37, 61-83 (1998) · Zbl 0921.92021
[15] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224 (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0691.35001
[16] Hastings, A., Can spatial variation alone lead to selection for dispersal?, Theor. Popul. Biol., 24, 244-251 (1983) · Zbl 0526.92025
[17] Jabin, P.-E.; Raoul, G., Selection dynamics with competition, J. Math. Biol., 63, 493-517 (2011) · Zbl 1230.92038
[18] Lorz, A.; Mirrahimi, S.; Perthame, B., Dirac mass dynamics in multidimensional nonlocal parabolic equations, Comm. Partial Differential Equations, 36, 1071-1098 (2011) · Zbl 1229.35113
[19] Lou, Y.; Ni, W.-M., Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131, 79-131 (1996) · Zbl 0867.35032
[20] Magal, P.; Webb, G. F., Mutation, selection, and recombination in a model of phenotypic evolution, Discrete Contin. Dyn. Syst., 6, 221-236 (2000) · Zbl 1007.92027
[21] Mirrahimi, S.; Perthame, B., Asymptotic analysis of a selection model with space, J. Math. Pures Appl., 104, 1108-1118 (2015) · Zbl 1327.35011
[22] Perthame, B.; Barles, G., Dirac concentrations in Lotka-Volterra parabolic PDEs, Indiana Univ. Math. J., 57, 3274-3301 (2008) · Zbl 1172.35005
[23] Perthame, B.; Souganidis, P. E., Rare mutations limit of a steady state dispersion trait model (2015)
[24] Phillips, B. L.; Brown, G. P.; Webb, J. K.; Shine, R., Invasion and the evolution of speed in toads, Nature, 439, 803 (2006)
[25] Turanova, O., On a model of a population with variable motility, Math. Models Methods Appl. Sci., 25, 1961-2014 (2015) · Zbl 1326.92062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.