×

Meshfree approach for linear and nonlinear analysis of sandwich plates: a critical review of twenty plate theories. (English) Zbl 1403.74321

Summary: Present paper reviews twenty different theories used for analysis of multilayered plates. The mathematical formulation of the actual physical problem of the plate subjected to mechanical loading is presented using von Karman nonlinear kinematics. These non-linear governing differential equations of equilibrium are linearized using quadratic extrapolation technique. A meshfree approach based on polynomial radial basis function is used for obtaining the solution. The results obtained for the sandwich plate are validated with other available results. It is observed that some theories under predicts the deflection by a reasonable amount. The effect varying core thickness on stresses and deflection of the sandwich plate is also presented.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74E30 Composite and mixture properties
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
74K20 Plates
Full Text: DOI

References:

[1] Mantari, J. L.; Oktem, A. S.; Soares, C. G., A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates, Int J Solids Struct, 49, 43-53, (2012)
[2] Kheirikhah, M. M.; Khalili, S. M.R.; Malekzadeh, F. K., Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory, Eur J Mech A/Solids, 31, 54-66, (2012) · Zbl 1278.74065
[3] Ferreira, A. J.M., Polyharmonic (thin-plate) splines in the analysis of composite plates, Int J Mech Sci, 46, 1549-1569, (2004) · Zbl 1098.74038
[4] Ferreira, A. J.M.; Roque, C. M.C.; Jorge, R. M.N., Analysis of composite plates by trigonometric shear deformation theory and multiquadrics, Comput Struct, 83, 2225-2237, (2005)
[5] Castro, L. M.S.; Ferreira, A. J.M.; Bertoluzza, S.; Batra, R. C.; Reddy, J. N., A wavelet collocation method for the static analysis of sandwich plates using a layerwise theory, Compos Struct, 92, 1786-1792, (2010)
[6] Xiang, S.; Ke-ming, W.; Yan-ting, A.; Yun-dong, S.; Shi, H., Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories, Compos Struct, 91, 31-37, (2009)
[7] Husain, J.; Gahtani, A.; Naffa, M., RBF meshless method for large deflection of thin plates with immovable edges, Eng Anal Boundary Elem, 33, 176-183, (2009) · Zbl 1244.74209
[8] Bitaraf, M.; Mohammadi, S., Large deflection analysis of flexible plates by the meshless finite point method, Thin-Walled Struct, 48, 200-214, (2010)
[9] Levinson, M., An accurate simple theory of the statics and dynamics of elastic plates, Mech Res Commun, 7, 343-350, (1980) · Zbl 0458.73035
[10] Reddy, J. N., A simple higher-order theory for laminated composite plates, J Appl Mech, 51, 745-752, (1984) · Zbl 0549.73062
[11] Shimpi, R. P.; Patel, H. G., Free vibrations of plate using two variable refined plate theory, J Sound Vib, 296, 979-999, (2006)
[12] Ambartsumian, S. A., On the theory of bending plates, Izv Otd Tekh Nauk ANSSSR, 5, 69-77, (1958) · Zbl 0107.41507
[13] Kaczkowski Z. Plates. In: Statical Calculations 1968;Arkady, Warsaw.
[14] Panc, V., Theories of elastic plates, (1975), Academia Prague · Zbl 0308.73032
[15] Reissner, E., On transverse bending of plates, including the effect of transverse shear deformation, Int J Solids Struct, 11, 569-573, (1975) · Zbl 0303.73053
[16] Levy, M., Memoire sur la theorie des plaques elastique planes, J Math Pure Appl, 30, 219-306, (1877)
[17] Stein, M., Nonlinear theory for plates and shells including effect of shearing, AIAA J, 24, 1537-1544, (1986) · Zbl 0596.73043
[18] Touratier, M., An efficient standard plate theory, Int J Eng Sci, 29, 8, 901-916, (1991) · Zbl 0825.73299
[19] Ghugal, Y. M.; Sayyad, A. S., A static flexure of thick isotropic plates using trigonometric shear deformation theory, J Solid Mech, 2, 1, 79-90, (2010)
[20] Shimpi, R. P.; Arya, H.; Naik, N. K., A higher order displacement model for the plate analysis, J Reinf Plast Compos, 22, 18, 1667-1688, (2003)
[21] Ferreira, A. J.M.; Roque, C. M.C.; Jorge, R. M.N., Analysis of composite plates by trigonometric shear deformation theory and multiquadrics, Comput Struct, 83, 2225-2237, (2005)
[22] Thai, H. T.; Vo, T. P., A new sinusoidal shear deformation theory for bending,buckling, and vibration of functionally graded plates, Appl Math Model, 37, 5, 3269-3281, (2013) · Zbl 1351.74034
[23] Mantari, J. L.; Oktem, A. S.; Soares, C. G., Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory, Compos Struct, 94, 37-49, (2011)
[24] Karama, M.; Afaq, K. S.; Mistou, S., A new theory for laminated composite plates, Proc IMechE Part L J Mater: Des Appl, 223, 53-62, (2009)
[25] Aydogdu, M., A new shear deformation theory for laminated composite plates, Compos Struct, 89, 94-101, (2009)
[26] Soldatos, K. P., A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mech, 94, 195-200, (1992) · Zbl 0850.73130
[27] Bessaim, A.; Houari, M. S.A.; Tounsi, A.; Mahmoud, S. R.; Bedia, E. A.A., A new higher order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets, J Sandw Struct Mater, 15, 6, 671-703, (2013)
[28] Grover, N.; Singh, B. N.; Maiti, D. K., Analytical and finite element modeling of laminated composite and sandwich plates: an assessment of a new shear deformation theory for free vibration response, Int J Mech Sci, 67, 89-99, (2013)
[29] Akavci, S. S., Two new hyperbolic shear displacement models for orthotropic laminated composite plates, Mech Compos Mater, 46, 215-226, (2010)
[30] Daouadji, T. H.; Henni, A. H.; Tounsi, A.; Bedia, E. A.A., A new hyperbolic shear deformation theory for bending analysis of functionally graded plates, Model Simul Eng, 2012, 1-10, (2013)
[31] Zenkour, A. M., A simple four-unknown refined theory for bending analysis of functionally graded plates, Appl Math Model, 37, 9041-9051, (2013) · Zbl 1426.74208
[32] Daouadji, T. H.; Tounsi, A.; Bedia, E. A.A., A new higher order shear deformation model for static behavior of functionally graded plates, Adv Appl Math Mech, 5, 3, 351-364, (2013)
[33] Mantari, J. L.; Oktem, A. S.; Soares, C. G., A new higher order shear deformation theory for sandwich and composite laminated plates, Composites: Part B, 43, 1489-1499, (2012)
[34] Singh, J.; Shukla, K. K., Nonlinear flexural analysis of laminated composite plates using RBF based meshless method, Comp Structure, 94, 1714-1720, (2012)
[35] Naffa Mahmoud, Husain; Al Gahtani, J., RBF-based meshless method for large deflection of thin plates, Eng Anal Boundary Elem, 2007, 31, 311-317, (2009) · Zbl 1195.74250
[36] Srinivas, S., A refined analysis of composite laminates, J Sound Vib, 30, 495-507, (1973) · Zbl 0267.73050
[37] Xiang, S.; Wang, K.; Ai, Y.; Sha, Y.; Shi, H., Analysis of isotropic, sandwich and laminated plates by a meshless method and various shear deformation theories, Compos Struct, 91, 31-37, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.