×

A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates. (English) Zbl 1351.74034

Summary: A new sinusoidal shear deformation theory is developed for bending, buckling, and vibration of functionally graded plates. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns and has strong similarities with classical plate theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton’s principle. The closed-form solutions of simply supported plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the bending, buckling, and vibration responses of functionally graded plates.

MSC:

74G60 Bifurcation and buckling
74K20 Plates
74H45 Vibrations in dynamical problems in solid mechanics
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics

References:

[1] Javaheri, R.; Eslami, M. R., Buckling of functionally graded plates under in-plane compressive loading, J. Appl. Math. Mech., 82, 4, 277-283 (2002) · Zbl 1051.74016
[2] Zhang, D. G.; Zhou, Y. H., A theoretical analysis of FGM thin plates based on physical neutral surface, Comput. Mater. Sci., 44, 2, 716-720 (2008)
[3] Mohammadi, M.; Saidi, A. R.; Jomehzadeh, E., Levy solution for buckling analysis of functionally graded rectangular plates, Appl. Compos. Mater., 17, 2, 81-93 (2010)
[4] Bodaghi, M.; Saidi, A. R., Stability analysis of functionally graded rectangular plates under nonlinearly varying in-plane loading resting on elastic foundation, Arch. Appl. Mech., 81, 6, 765-780 (2011) · Zbl 1271.74084
[5] Della Croce, L.; Venini, P., Finite elements for functionally graded Reissner-Mindlin plates, Comput. Methods Appl. Mech. Eng., 193, 9-11, 705-725 (2004) · Zbl 1106.74408
[6] Ganapathi, M.; Prakash, T.; Sundararajan, N., Influence of functionally graded material on buckling of skew plates under mechanical loads, J. Eng. Mech., 132, 8, 902-905 (2006)
[7] Zhao, X.; Liew, K. M., Geometrically nonlinear analysis of functionally graded plates using the element-free kp-Ritz method, Comput. Methods Appl. Mech. Eng., 198, 33-36, 2796-2811 (2009) · Zbl 1228.74119
[8] Zhao, X.; Lee, Y. Y.; Liew, K. M., Free vibration analysis of functionally graded plates using the element-free kp-Ritz method, J. Sound Vib., 319, 3-5, 918-939 (2009)
[9] Lee, Y. Y.; Zhao, X.; Reddy, J. N., Postbuckling analysis of functionally graded plates subject to compressive and thermal loads, Comput. Methods Appl. Mech. Eng., 199, 25-28, 1645-1653 (2010) · Zbl 1231.74140
[10] Hosseini-Hashemi, S.; Rokni Damavandi Taher, H.; Akhavan, H.; Omidi, M., Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory, Appl. Math. Model., 34, 5, 1276-1291 (2010) · Zbl 1186.74049
[11] Hosseini-Hashemi, S.; Fadaee, M.; Atashipour, S. R., A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates, Int. J. Mech. Sci., 53, 1, 11-22 (2011)
[12] Reddy, J. N., Analysis of functionally graded plates, Int. J. Numer. Methods Eng., 47, 1-3, 663-684 (2000) · Zbl 0970.74041
[13] Karama, M.; Afaq, K. S.; Mistou, S., Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity, Int. J. Solids Struct., 40, 6, 1525-1546 (2003) · Zbl 1087.74579
[14] Zenkour, A. M., A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses, Int. J. Solids Struct., 42, 18-19, 5224-5242 (2005) · Zbl 1119.74471
[15] Zenkour, A. M., A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration, Int. J. Solids Struct., 42, 18-19, 5243-5258 (2005) · Zbl 1119.74472
[16] Zenkour, A. M., Generalized shear deformation theory for bending analysis of functionally graded plates, Appl. Math. Model., 30, 1, 67-84 (2006) · Zbl 1163.74529
[17] Xiao, J. R.; Batra, R. C.; Gilhooley, D. F.; Gillespie, J. W.; McCarthy, M. A., Analysis of thick plates by using a higher-order shear and normal deformable plate theory and MLPG method with radial basis functions, Comput. Methods Appl. Mech. Eng., 196, 4-6, 979-987 (2007) · Zbl 1120.74865
[18] Matsunaga, H., Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory, Compos. Struct., 82, 4, 499-512 (2008)
[19] Pradyumna, S.; Bandyopadhyay, J. N., Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation, J. Sound Vib., 318, 1-2, 176-192 (2008)
[20] Fares, M. E.; Elmarghany, M. K.; Atta, D., An efficient and simple refined theory for bending and vibration of functionally graded plates, Compos. Struct., 91, 3, 296-305 (2009)
[21] Talha, M.; Singh, B. N., Static response and free vibration analysis of FGM plates using higher order shear deformation theory, Appl. Math. Model., 34, 12, 3991-4011 (2010) · Zbl 1201.74044
[22] Talha, M.; Singh, B. N., Thermo-mechanical buckling analysis of finite element modelled functionally graded ceramic-metal plates, Int. J. Appl. Mech., 3, 4, 867-880 (2011)
[23] Benyoucef, S.; Mechab, I.; Tounsi, A.; Fekrar, A.; Ait Atmane, H.; Adda Bedia, E. A., Bending of thick functionally graded plates resting on Winkler-Pasternak elastic foundations, Mech. Compos. Mater., 46, 4, 425-434 (2010)
[24] Atmane, H. A.; Tounsi, A.; Mechab, I.; Adda Bedia, E. A., Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory, Int. J Mech. Mater. Design, 6, 2, 113-121 (2010)
[25] Meiche, N. E.; Tounsi, A.; Ziane, N.; Mechab, I.; Adda Bedia, E. A., A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate, Int. J. Mech. Sci., 53, 4, 237-247 (2011)
[26] Mantari, J. L.; Oktem, A. S.; Guedes Soares, C., Bending response of functionally graded plates by using a new higher order shear deformation theory, Compos. Struct., 94, 2, 714-723 (2012) · Zbl 1348.74215
[27] Xiang, S.; Jin, Y.-x.; Bi, Z.-y.; Jiang, S.-x.; Yang, M.-s., A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates, Compos. Struct., 93, 11, 2826-2832 (2011)
[28] Merdaci, S.; Tounsi, A.; Houari, M.; Mechab, I.; Hebali, H.; Benyoucef, S., Two new refined shear displacement models for functionally graded sandwich plates, Arch. Appl. Mech., 81, 11, 1507-1522 (2011) · Zbl 1271.74285
[29] Ameur, M.; Tounsi, A.; Mechab, I.; El Bedia, A. A., A new trigonometric shear deformation theory for bending analysis of functionally graded plates resting on elastic foundations, KSCE J. Civil Eng., 15, 8, 1405-1414 (2011)
[31] Yang, J.; Liew, K. M.; Kitipornchai, S., Stochastic analysis of compositionally graded plates with system randomness under static loading, Int. J. Mech. Sci., 47, 10, 1519-1541 (2005) · Zbl 1192.74232
[32] Kitipornchai, S.; Yang, J.; Liew, K. M., Random vibration of the functionally graded laminates in thermal environments, Comput. Methods Appl. Mech. Eng., 195, 9-12, 1075-1095 (2006) · Zbl 1115.74031
[34] Liew, K. M.; Yang, J.; Kitipornchai, S., Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading, Int. J. Solids Struct., 40, 15, 3869-3892 (2003) · Zbl 1038.74546
[35] Qatu, M. S.; Leissa, A. W., Buckling or transverse deflections of unsymmetrically laminated plates subjected to in-plane loads, AIAA Journal, 31, 1, 189-194 (1993) · Zbl 0775.73289
[36] Aydogdu, M., Conditions for functionally graded plates to remain flat under in-plane loads by classical plate theory, Compos. Struct., 82, 1, 155-157 (2008)
[37] Naderi, A.; Saidi, A. R., On pre-buckling configuration of functionally graded Mindlin rectangular plates, Mech. Res. Commun., 37, 6, 535-538 (2010) · Zbl 1272.74201
[38] Shufrin, I.; Eisenberger, M., Stability and vibration of shear deformable plates-first order and higher order analyses, Int. J. Solids Struct., 42, 3-4, 1225-1251 (2005) · Zbl 1086.74510
[39] Hosseini-Hashemi, S.; Fadaee, M.; Atashipour, S. R., Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure, Compos. Struct., 93, 2, 722-735 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.