×

Solutions to \(p(x)\)-Laplace type equations via nonvariational techniques. (English) Zbl 1403.35100

Summary: In this article, we consider a class of nonlinear Dirichlet problems driven by a Leray-Lions type operator with variable exponent. The main result establishes an existence property by means of nonvariational arguments, that is, nonlinear monotone operator theory and approximation method. Under some natural conditions, we show that a weak limit of approximate solutions is a solution of the given quasilinear elliptic partial differential equation involving variable exponent.

MSC:

35J60 Nonlinear elliptic equations
35J62 Quasilinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI

References:

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975. · Zbl 0314.46030
[2] Y. Akdim, E. Azroul, A. Benkirane, Existence of solutions for quasilinear degenerate elliptic equations, Electron. J. Differential Equations 71 (2001), 1–19. · Zbl 0988.35065
[3] M. Avci, A. Pankov, Nontrivial solutions of discrete nonlinear equations with variable exponent, J. Math. Anal. Appl. 431 (2015) 1, 22–33. · Zbl 1318.39006
[4] M. Avci, A. Pankov, Multivalued elliptic operators with nonstandard growth, Adv. Nonlinear Anal. 7 (2018) 1, 35–48. · Zbl 1391.35134
[5] A. Bensoussan, L. Boccardo, F. Murat, On a non linear partial differential equation having natural growth terms and unbounded solution, Annales de l’I. H. P, section C 5 (1988) 4, 347–364. · Zbl 0696.35042
[6] M.M. Boureanu, D.N. Udrea, Existence and multiplicity results for elliptic problems with p(·)-growth conditions, Nonlinear Anal. Real World Appl. 14 (2013), 1829–1844. · Zbl 1271.35045
[7] F.E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862–874. · Zbl 0127.31901
[8] B. Cekic, A.V. Kalinin, R.A. Mashiyev, M. Avci, Lp(x)(Ω)-estimates of vector fields and some applications to magnetostatic problems, J. Math. Anal. Appl. 389 (2012), 838–851. · Zbl 1234.35192
[9] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006) 4, 1383–1406. · Zbl 1102.49010
[10] D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Springer, Basel, 2013. · Zbl 1268.46002
[11] L. Dai, W. Gao, Z. Li, Existence of solutions for degenerate elliptic problems in weighted Sobolev space, Journal of Function Spaces 2015 (2015), Article ID 265127. · Zbl 1332.35124
[12] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011. · Zbl 1222.46002
[13] P. Drábek, A. Kufner, V. Mustonen, Pseudo-monotonicity and denerated or singualar elliptic operators, Bull. Aust. Math. Soc. 58 (1998) 2, 213–221. · Zbl 0913.35051
[14] P. Drábek, F. Nicolosi, Existence of bounded solutions for some degenerated quasilinear elliptic equations, [in:] M. Biroli (ed.), Potential Theory and Degenerate Partial Differ- ential Operators, Springer, Dordrecht, 1995. · Zbl 0848.35049
[15] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent, Studia Mathematica 143 (2000) 3, 267–293. · Zbl 0974.46040
[16] L.C. Evans, Partial Differential Equations, AMS Graduate Studies in Mathematics, vol. 19, 1998. · Zbl 0902.35002
[17] X. Fan, Differential equations of divergence form in Musielak–Sobolev spaces and a sub-supersolution method, J. Math. Anal. Appl. 386 (2012) 2, 593–604. · Zbl 1270.35156
[18] X.L. Fan, Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003) 8, 1843–1852. Solutions to p(x)-Laplace type equations via nonvariational techniques305 · Zbl 1146.35353
[19] X. Fan, D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2001) 2, 424–446. · Zbl 1028.46041
[20] R. Filippucci, P. Pucci, V. Rădulescu, Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Communications in Partial Differential Equations 33 (2008) 4, 706–717. · Zbl 1147.35038
[21] M. Galewski, A new variational method for the p(x)-Laplacian equation, Bull. Austral. Math. Soc. 72 (2005) 1, 53–65. · Zbl 1115.35035
[22] S. Heidarkhani, G.A. Afrouzi, S. Moradi, G. Caristi, A variational approach for solving p(x)-biharmonic equations with Navier boundary conditions, Electron. J. Differential Equations 25 (2017), 1–15. · Zbl 1381.35036
[23] J. Kim, H. Ku, Existence of solutions for p-Laplace type equations, J. Korean Math. Soc. 33 (1996) 2, 291–307. · Zbl 0858.35044
[24] O. Kovăčik, J. Răkosnik, On spaces Lp(x)and Wk,p(x), Czechoslovak Mathematical Journal 41 (1991) 116, 592–618. · Zbl 0784.46029
[25] J. Leray, J.-L. Lions, Quelques résulatats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bulletin de la Société Mathématique de France 93 (1965), 97–107. · Zbl 0132.10502
[26] M. Mihăilescu, V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. A 462 (2006) 2073, 2625–2641. · Zbl 1149.76692
[27] V.D. Rădulescu, Nonlinear elliptic equations with variable exponent: Old and new, Nonlinear Anal. 121 (2015), 336–369. · Zbl 1321.35030
[28] V.D. Rădulescu, D.D. Repov˘s, Partial Differential Equations with Variable Equations: Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015. · Zbl 1343.35003
[29] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000. · Zbl 0962.76001
[30] J. Simon, Régularité de la solution d’une équation non linéaire dans RN, Journées d’Analyse Non Linéaire (Proc. Conf., Besançon, 1977), 205–227, Lecture Notes in Math., 665, Springer, Berlin, 1978. · Zbl 0402.35017
[31] Z. Yucedag, Solutions of nonlinear problems involving p(x)-Laplacian operator, Advences in Nonlinear Analysis 4 (2015) 4, 285–293. · Zbl 1328.35058
[32] V. Zhikov, On Lavrentiev’s phenomenon, Russian J. Math. Phys. 3 (1995) 2, 249–269. · Zbl 0910.49020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.