×

Nontrivial solutions of discrete nonlinear equations with variable exponent. (English) Zbl 1318.39006

Summary: In the present paper, we show the existence of ground state solution of a discrete \(p(n)\)-Laplacian type equation involving unbounded potential by using the mountain pass theorem and Nehari manifold.

MSC:

39A12 Discrete version of topics in analysis
39A10 Additive difference equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
Full Text: DOI

References:

[1] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[2] Diening, L.; Harjuletho, P.; Hästö, P.; Růžička, M., Lebesgue and Sobolev Spaces with Variable Exponents (2011), Springer-Verlag: Springer-Verlag Berlin · Zbl 1222.46002
[3] Flash, S.; Willis, C. R., Discrete breathers, Phys. Rep., 295, 181-264 (1998)
[4] Hennig, D.; Tsironis, G. P., Wave transmission in non-linear lattices, Phys. Rep., 309, 333-432 (1999)
[5] Iannizzotto, A.; Rădulescu, V., Positive homoclinic solutions for the discrete \(p\)-Laplacian with a coercive weight function, Differential Integral Equations, 27, 35-44 (2014) · Zbl 1313.39004
[6] Jabri, Y., The Mountain Pass Theorem, Variants, Generalizations and Some Applications (2003), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1036.49001
[7] Kevrekidis, P. G., The Discrete Nonlinear Schrödinger Equation (2009), Springer: Springer Berlin · Zbl 1197.35270
[8] Kevrekidis, P. G.; Frantzeskakis, D. J.; Garretero-González, R., Emergent Nonlinear Phenomena in Bose-Einstein Condensates (2008), Springer: Springer Berlin · Zbl 1216.82023
[9] Mihăilescu, M.; Rădulescu, V.; Tersian, S., Homoclinic solutions of difference equations with variable exponents, Topol. Methods Nonlinear Anal., 38, 277-289 (2011) · Zbl 1270.39005
[10] Mills, D. N., Nonlinear Optics. Basic Concepts (1998), Springer: Springer Berlin · Zbl 0914.00011
[11] Molica Bisci, G.; Repovs, D., Existence of solutions for \(p\)-Laplacian discrete equations, Appl. Math. Comput., 242, 454-461 (2014) · Zbl 1334.39019
[12] Molica Bisci, G.; Repovs, D., On sequences of solutions for discrete anisotropic equations, Expo. Math., 32, 284-295 (2014) · Zbl 1538.39005
[13] Pankov, A., Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 19, 27-40 (2006) · Zbl 1220.35163
[14] Pankov, A., Gap solitons in periodic discrete nonlinear Schrödinger equations II: a generalized Nehari manifold approach, Discrete Contin. Dyn. Syst., 19, 2, 419-430 (2007) · Zbl 1220.35164
[15] Pankov, A., Standing waves for discrete nonlinear Schrödinger equations: sign-changing nonlinearities, Appl. Anal., 92, 2, 308-317 (2013) · Zbl 1266.37043
[16] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0609.58002
[17] Rădulescu, V.; Repovs, D., Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis (2015), CRC Press, Taylor and Francis Group: CRC Press, Taylor and Francis Group Boca Raton, FL · Zbl 1343.35003
[18] Růžička, M., Electrorheological Fluids: Modeling and Mathematical Theory (2000), Springer: Springer Berlin · Zbl 0968.76531
[19] Szulkin, A.; Weth, T., The method of Nehari manifold, (Handbook of Nonconvex Analysis and Applications (2010), Int. Press: Int. Press Somerville, MA), 597-632 · Zbl 1218.58010
[20] Zhang, G.; Pankov, A., Standing waves of the discrete nonlinear Schrödinger equations with growing potentials, Commun. Math. Anal., 5, 2, 38-49 (2008) · Zbl 1168.35437
[21] Zhang, G.; Pankov, A., Standing wave solutions of the discrete non-linear Schrödinger equations with unbounded potentials II, Appl. Anal., 89, 9, 1541-1557 (2010) · Zbl 1387.35558
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.