×

Outbreak analysis of an SIS epidemic model with rewiring. (English) Zbl 1402.92393

Summary: This paper is devoted to the analysis of the early dynamics of an SIS epidemic model defined on networks. The model, introduced by T. Gross, C. J. D. D’Lima, and B. Blasius [“Epidemic dynamics on an adaptive network”, Phys. Rev. Lett. 96, No. 20, Article ID 208701, 4 p. (2006; doi:10.1103/PhysRevLett.96.208701)], is based on the pair-approximation formalism and assumes that, at a given rewiring rate, susceptible nodes replace an infected neighbour by a new susceptible neighbour randomly selected among the pool of susceptible nodes in the population. The analysis uses a triple closure that improves the widely assumed in epidemic models defined on regular and homogeneous networks, and applies it to better understand the early epidemic spread on Poisson, exponential, and scale-free networks. Two extinction scenarios, one dominated by transmission and the other one by rewiring, are characterized by considering the limit system of the model equations close to the beginning of the epidemic. Moreover, an analytical condition for the occurrence of a bistability region is obtained.

MSC:

92D30 Epidemiology
05C90 Applications of graph theory
90B15 Stochastic network models in operations research

References:

[1] Bansal S, Grenfell BT, Meyers LA (2007) When individual behaviour matters: homogeneous and networks models in epidemiology. J R Soc Interface 4: 879-891 · doi:10.1098/rsif.2007.1100
[2] Bauch CT (2005) The spread of infectious diseases in spatially structured populations: An invasory pair approximation. Math Biosci 198: 217-237 · Zbl 1089.92041 · doi:10.1016/j.mbs.2005.06.005
[3] Boguñá M, Pastor-Satorras R, Vespignani A (2004) Cut-offs and finite size effects in scale-free networks. Eur Phys J B 38: 205-209 · doi:10.1140/epjb/e2004-00038-8
[4] Böhme GA, Gross T (2011) Analytical calculation of fragmentation transitions in adaptive networks. Phys Rev E 83: 035101(R) · doi:10.1103/PhysRevE.83.035101
[5] Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley, New York · Zbl 0997.92505
[6] Eames KTD, Keeling MJ (2002) Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc Natl Acad Sci USA 99: 13330-13335 · doi:10.1073/pnas.202244299
[7] Ferguson N (2007) Capturing human behaviour. Nature 446: 733 · doi:10.1038/446733a
[8] Funk S, Salath M, Jansen VAA (2010) Modelling the influence of human behaviour on the spread of infection diseases: a review. J R Soc Interface 7: 1247-1256 · doi:10.1098/rsif.2010.0142
[9] Garcia-Domingo JL, Saldaña J (2011) Extinction threshold for spatial forest dynamics with height structure. J Theor Biol 276: 138-149 · Zbl 1405.92284 · doi:10.1016/j.jtbi.2011.02.003
[10] Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58: 35-55 · doi:10.1146/annurev.physchem.58.032806.104637
[11] Gross, T.; Boccaletti, S. (ed.); Latora, V. (ed.); Moreno, Y. (ed.), Interplay of network state and topology in epidemic dynamics, 417-436 (2009), Singapore · doi:10.1142/9789812838803_0018
[12] Gross T, D’Lima CJD, Blasius B (2006) Epidemic dynamics on an adaptive network. Phys Rev Lett 96: 208701 · doi:10.1103/PhysRevLett.96.208701
[13] House T, Keeling MJ (2011) Insights from unifying modern approximations to infections on networks. J R Soc Interface 8: 67-73 · doi:10.1098/rsif.2010.0179
[14] Keeling M (1999) The effects of local spatial structure on epidemiological invasions. Proc R Soc Lond B 266: 859-867 · doi:10.1098/rspb.1999.0716
[15] Keeling MJ, Rand DA, Morris AJ (1997) Correlation models for childhood epidemics. Proc R Soc Lond B 264: 1149-1156 · Zbl 0949.93059 · doi:10.1098/rspb.1997.0159
[16] Kimura D, Hayakawa Y (2008) Coevolutionary networks with homophily and heterophily. Phys Rev E 78: 016103 · doi:10.1103/PhysRevE.78.016103
[17] Lindquist J, Ma J, van den Driessche P, Willeboordse FH (2011) Effective degree network disease models. J Math Biol 62: 143-164 · Zbl 1232.92066 · doi:10.1007/s00285-010-0331-2
[18] Marceau V, Noël PA, Hébert-Dufresne L, Allard A, Dubé LJ (2010) Adaptive networks: coevolution of disease and topology. Phys Rev E 82: 036116 · doi:10.1103/PhysRevE.82.036116
[19] Miller JC (2009) Spread of infectious disease through clustered populations. J R Soc Interface 6: 1121-1134 · doi:10.1098/rsif.2008.0524
[20] Perko L (1993) Differential equations and dynamical systems, 1st edn. Springer, New York · Zbl 0792.34028
[21] Rand, DA; McGlade, J. (ed.), Correlation equations and pair approximation for spatial ecologies, 100-142 (1999), New York · doi:10.1002/9781444311501.ch4
[22] Risau-Gusman S, Zanette DH (2009) Contact switching as a control strategy for epidemic outbreaks. J Theor Biol 257: 52-60 · Zbl 1400.92534 · doi:10.1016/j.jtbi.2008.10.027
[23] Schwartz IB, Shaw LB (2010) Rewiring for adaptation. Physics 3: 17 · doi:10.1103/Physics.3.17
[24] Schwarzkopf Y, Rákos A, Mukamel D (2010) Epidemic spreading in evolving networks. Phys Rev E 82: 036112 · doi:10.1103/PhysRevE.82.036112
[25] Segel LA, Slemrod M (1989) The quasi-steady-state assumption: a case study in perturbation. SIAM Rev 31: 446-477 · Zbl 0679.34066 · doi:10.1137/1031091
[26] Serrano MÁ, Boguñá M (2006) Percolation and epidemic thresholds in clustered networks. Phys Rev Lett 97: 088701 · doi:10.1103/PhysRevLett.97.088701
[27] Sharkey K (2008) Deterministic epidemiological models at the individual level. J Math Biol 57: 311-331 · Zbl 1141.92039 · doi:10.1007/s00285-008-0161-7
[28] Shaw LB, Schwartz IB (2008) Fluctuating epidemics on adaptive networks. Phys Rev E 77: 066101 · doi:10.1103/PhysRevE.77.066101
[29] Svensson A (2007) A note on generation times in epidemic models. Math Biosci 208: 300-311 · Zbl 1116.92060 · doi:10.1016/j.mbs.2006.10.010
[30] Taylor M, Simon PL, Green DM, House T, Kiss IZ (2012) From Markovian to pairwise epidemic models and the performance of moment closure approximations. J Math Biol 64: 1021-1042 · Zbl 1252.92051 · doi:10.1007/s00285-011-0443-3
[31] Trapman P (2007) Reproduction numbers for epidemics on networks using pair approximation. Math Biosci 210: 464-489 · Zbl 1134.92030 · doi:10.1016/j.mbs.2007.05.011
[32] Vazquez F, Eguíluz VM, San Miguel M (2008) Generic absorbing transition in coevolution dynamics. Phys Rev Lett 100: 108702 · doi:10.1103/PhysRevLett.100.108702
[33] Volz E (2008) SIR dynamics in random networks with heterogeneous connectivity. J Math Biol 56: 293-310 · Zbl 1143.92036 · doi:10.1007/s00285-007-0116-4
[34] Volz E, Frost SD, Rothenberg R, Meyers LA (2010) Epidemiological bridging by injection drug use drives an early HIV epidemic. Epidemics 2: 155-164 · doi:10.1016/j.epidem.2010.06.003
[35] Volz E, Meyers LA (2007) Susceptible-infected-recovered epidemics in dynamic contact networks. Proc R Soc B 274: 2925-2933 · doi:10.1098/rspb.2007.1159
[36] Volz E, Meyers LA (2009) Epidemic thresholds in dynamic contact networks. J R Soc Interface 6: 233-241 · doi:10.1098/rsif.2008.0218
[37] Volz E, Miller JC, Galvani A, Meyers LA (2011) Effects of heterogeneous and clustered contact patterns on infectious disease dynamics. PLoS Comp Biol 7: e1002042 · doi:10.1371/journal.pcbi.1002042
[38] Wieland S, Aquino T, Nunes A (2012) The structure of coevolving infection networks. Europhys Lett 97: 18003 · doi:10.1209/0295-5075/97/18003
[39] Zanette DH, Risau-Gusmán S (2008) Infection spreading in a population with evolving contacts. J Biol Phys 34: 135-148 · doi:10.1007/s10867-008-9060-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.