×

How the formation of amyloid plaques and neurofibrillary tangles may be related: a mathematical modelling study. (English) Zbl 1402.92099

Summary: We develop a mathematical model that enables us to investigate possible mechanisms by which two primary markers of Alzheimer’s disease (AD), extracellular amyloid plaques and intracellular tangles, may be related. Our model investigates the possibility that the decay of anterograde axonal transport of amyloid precursor protein (APP), caused by toxic tau aggregates, leads to decreased APP transport towards the synapse and APP accumulation in the soma. The developed model thus couples three processes: (i) slow axonal transport of tau, (ii) tau misfolding and agglomeration, which we simulated by using the Finke-Watzky model and (iii) fast axonal transport of APP. Because the timescale for tau agglomeration is much larger than that for tau transport, we suggest using the quasi-steady-state approximation for formulating and solving the governing equations for these three processes. Our results suggest that misfolded tau most likely accumulates in the beginning of the axon. The analysis of APP transport suggests that APP will also likely accumulate in the beginning of the axon, causing an increased APP concentration in this region, which could be interpreted as a ‘traffic jam’. The APP flux towards the synapse is significantly reduced by tau misfolding, but not due to the APP traffic jam, which can be viewed as a symptom, but rather due to the reduced affinity of kinesin-1 motors to APP-transporting vesicles.

MSC:

92C20 Neural biology
92C50 Medical applications (general)
Full Text: DOI

References:

[1] Colvin, MT, Atomic resolution structure of monomorphic A beta(42) amyloid fibrils, J. Am. Chem. Soc., 138, 9663-9674, (2016) · doi:10.1021/jacs.6b05129
[2] Walti, MA; Ravotti, F.; Arai, H.; Glabe, CG; Wall, JS; Bockmann, A.; Guentert, P.; Meier, BH; Riek, R., Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril, Proc. Natl Acad. Sci. USA, 113, E4976-E4984, (2016) · doi:10.1073/pnas.1600749113
[3] O’Brien, RJ; Wong, PC, Amyloid precursor protein processing and Alzheimer’s disease, Ann. Rev. Neurosci., 34, 185-204, (2011) · doi:10.1146/annurev-neuro-061010-113613
[4] Ballatore, C.; Lee, VMY; Trojanowski, JQ, Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders, Nat. Rev. Neurosci., 8, 663-672, (2007) · doi:10.1038/nrn2194
[5] Tai, H.; Serrano-Pozo, A.; Hashimoto, T.; Frosch, MP; Spires-Jones, TL; Hyman, BT, The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system, Am. J. Pathol., 181, 1426-1435, (2012) · doi:10.1016/j.ajpath.2012.06.033
[6] Ittner, A.; Ke, YD; van Eersel, J.; Gladbach, A.; Goetz, J.; Ittner, LM, Brief update on different roles of tau in neurodegeneration, IUBMB Life, 63, 495-502, (2011) · doi:10.1002/iub.467
[7] Bloom, GS, Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis, JAMA Neurol., 71, 505-508, (2014) · doi:10.1001/jamaneurol.2013.5847
[8] Karran, E.; Mercken, M.; De Strooper, B., The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics, Nat. Rev. Drug Discovery, 10, 698-712, (2011) · doi:10.1038/nrd3505
[9] St George-Hyslop, PH; Morris, JC, Will anti-amyloid therapies work for Alzheimer’s disease, Lancet, 372, 180-182, (2008) · doi:10.1016/S0140-6736(08)61047-8
[10] Stancu, I.; Vasconcelos, B.; Terwel, D.; Dewachter, I., Models of beta-amyloid induced tau-pathology: the long and ‘folded’ road to understand the mechanism, Mol. Neurodegener., 9, 51, (2014) · doi:10.1186/1750-1326-9-51
[11] Braak, H.; Del Tredici, K., Amyloid-beta may be released from non-junctional varicosities of axons generated from abnormal tau-containing brainstem nuclei in sporadic Alzheimer’s disease: a hypothesis, Acta Neuropathol., 126, 303-306, (2013) · doi:10.1007/s00401-013-1153-2
[12] Vossel, KA; Zhang, K.; Brodbeck, J.; Daub, AC; Sharma, P.; Finkbeiner, S.; Cui, B.; Mucke, L., Tau reduction prevents Aβ-induced defects in axonal transport, Science, 330, 198, (2010) · doi:10.1126/science.1194653
[13] Braak, H.; Del Tredici, K., Early presymptomatic stages, Neuroanatomy and pathology of sporadic Alzheimer’s disease. Advances in anatomy, embryology and cell biology, 25-36, (2015), Springer
[14] Kamal, A.; Stokin, G.; Yang, Z.; Xia, C.; Goldstein, L., Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I, Neuron, 28, 449-459, (2000) · doi:10.1016/S0896-6273(00)00124-0
[15] Chiba, K., Quantitative analysis of APP axonal transport in neurons: role of JIP1 in enhanced APP anterograde transport, Mol. Biol. Cell, 25, 3569-3580, (2014) · doi:10.1091/mbc.E14-06-1111
[16] Lazarov, O., Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited, J. Neurosci., 25, 2386-2395, (2005) · doi:10.1523/JNEUROSCI.3089-04.2005
[17] Goldsbury, C.; Mocanu, M.; Thies, E.; Kaether, C.; Haass, C.; Keller, P.; Biernat, J.; Mandelkow, E.; Mandelkow, E., Inhibition of APP trafficking by tau protein does not increase the generation of amyloid-beta peptides, Traffic, 7, 873-888, (2006) · doi:10.1111/j.1600-0854.2006.00434.x
[18] Hao, W.; Friedman, A., Mathematical model on Alzheimer’s disease, BMC Syst. Biol., 10, 108, (2016) · doi:10.1186/s12918-016-0348-2
[19] Lloret-Villas, A.; Varusai, TM; Juty, N.; Laibe, C.; Le Novere, N.; Hermjakob, H.; Chelliah, V., The impact of mathematical modeling in understanding the mechanisms underlying neurodegeneration: evolving dimensions and future directions, CPT-Pharmacometrics & Systems Pharmacology, 6, 73-86, (2017) · doi:10.1002/psp4.12155
[20] Stamer, K.; Vogel, R.; Thies, E.; Mandelkow, E.; Mandelkow, E., Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress, J. Cell Biol., 156, 1051-1063, (2002) · doi:10.1083/jcb.200108057
[21] Utton, M.; Connell, J.; Asuni, A.; van Slegtenhorst, M.; Hutton, M.; de Silva, R.; Lees, A.; Miller, C.; Anderton, B., The slow axonal transport of the microtubule-associated protein tau and the transport rates of different isoforms and mutants in cultured neurons, J. Neurosci., 22, 6394-6400, (2002) · doi:20026670
[22] Utton, M.; Noble, W.; Hill, J.; Anderton, B.; Hanger, D., Molecular motors implicated in the axonal transport of tau and alpha-synuclein, J. Cell. Sci., 118, 4645-4654, (2005) · doi:10.1242/jcs.02558
[23] Cuchillo-Ibanez, I.; Seereeram, A.; Byers, HL; Leung, K.; Ward, MA; Anderton, BH; Hanger, DP, Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin, FASEB J., 22, 3186-3195, (2008) · doi:10.1096/fj.08-109181
[24] Scholz, T.; Mandelkow, E., Transport and diffusion of tau protein in neurons, Cell. Mol. Life Sci., 71, 3139-3150, (2014) · doi:10.1007/s00018-014-1610-7
[25] Konzack, S.; Thies, E.; Marx, A.; Mandelkow, EM; Mandelkow, E., Swimming against the tide: Mobility of the microtubule-associated protein tau in neurons, J. Neurosci., 27, 9916-9927, (2007) · doi:10.1523/JNEUROSCI.0927-07.2007
[26] Samsonov, A.; Yu, JZ; Rasenick, M.; Popov, SV, Tau interaction with microtubules \(in vivo\), J. Cell. Sci., 117, 6129-6141, (2004) · doi:10.1242/jcs.01531
[27] Weissmann, C.; Reyher, H.; Gauthier, A.; Steinhoff, H.; Junge, W.; Brandt, R., Microtubule binding and trapping at the tip of neurites regulate tau motion in living neurons, Traffic, 10, 1655-1668, (2009) · doi:10.1111/j.1600-0854.2009.00977.x
[28] Hinrichs, MH; Jalal, A.; Brenner, B.; Mandelkow, E.; Kumar, S.; Scholz, T., Tau protein diffuses along the microtubule lattice, J. Biol. Chem., 287, 38 559-38 568, (2012) · doi:10.1074/jbc.M112.369785
[29] Kuznetsov, IA; Kuznetsov, AV, A comparison between the diffusion-reaction and slow axonal transport models for predicting tau distribution along an axon, Math. Med. Biol., 32, 263-283, (2015) · Zbl 1325.92020 · doi:10.1093/imammb/dqu003
[30] Kuznetsov, IA; Kuznetsov, AV, Simulating tubulin-associated unit transport in an axon: using bootstrapping for estimating confidence intervals of best fit parameter values obtained from indirect experimental data, Proc. R. Soc. A, 473, 20170045, (2017) · Zbl 1404.92055 · doi:10.1098/rspa.2017.0045
[31] Black, MM; Slaughter, T.; Moshiach, S.; Obrocka, M.; Fischer, I., Tau is enriched on dynamic microtubules in the distal region of growing axons, J. Neurosci., 16, 3601-3619, (1996)
[32] Mercken, M.; Fischer, I.; Kosik, K.; Nixon, R., Three distinct axonal transport rates for tau, tubulin, and other microtubule-associated proteins: evidence for dynamic interactions of tau with microtubules \(in vivo\), J. Neurosci., 15, 8259-8267, (1995)
[33] Segel, LA, On the validity of the steady-state assumption of enzyme-kinetics, Bull. Math. Biol., 50, 579-593, (1988) · Zbl 0653.92006 · doi:10.1007/BF02460092
[34] Flach, EH; Schnell, S., Use and abuse of the quasi-steady-state approximation, Syst. Biol., 153, 187-191, (2006) · doi:10.1049/ip-syb:20050104
[35] Klumpp, S.; Lipowsky, R., Cooperative cargo transport by several molecular motors, Proc. Natl Acad. Sci. USA, 102, 17 284-17 289, (2005) · doi:10.1073/pnas.0507363102
[36] Seitz, A.; Surrey, T., Processive movement of single kinesins on crowded microtubules visualized using quantum dots, EMBO J., 25, 267-277, (2006) · doi:10.1038/sj.emboj.7600937
[37] Zhuravlev, PI; Lan, Y.; Minakova, MS; Papoian, GA, Theory of active transport in filopodia and stereocilia, Proc. Natl Acad. Sci. USA, 109, 10 849-10 854, (2012) · doi:10.1073/pnas.1200160109
[38] Kuznetsov, AV, Effect of kinesin velocity distribution on slow axonal transport, Cent. Eur. J. Phys., 10, 779-788, (2012) · doi:10.2478/s11534-012-0051-x
[39] Kuznetsov, AV, An analytical solution describing the propagation of positive injury signals in an axon: effect of dynein velocity distribution, Comput. Methods Biomech. Biomed. Engin., 16, 699-706, (2013) · doi:10.1080/10255842.2011.632376
[40] Mueller, MJI; Klumpp, S.; Lipowsky, R., Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors, Proc. Natl Acad. Sci. USA, 105, 4609-4614, (2008) · doi:10.1073/pnas.0706825105
[41] Poppek, D.; Keck, S.; Ermak, G.; Jung, T.; Stolzing, A.; Ullrich, O.; Davies, KJA; Grune, T., Phosphorylation inhibits turnover of the tau protein by the proteasome: Influence of RCAN1 and oxidative stress, Biochem. J., 400, 511-520, (2006) · doi:10.1042/BJ20060463
[42] Kierszenbaum, A., The 26S proteasome: Ubiquitin-mediated proteolysis in the tunnel, Mol. Reprod. Dev., 57, 109-110, (2000) · doi:10.1002/1098-2795(200010)57:2<109::AID-MRD1>3.0.CO;2-9
[43] Lee, RH; Mitchell, CS, Axonal transport cargo motor count versus average transport velocity: is fast versus slow transport really single versus multiple motor transport?, J. Theor. Biol., 370, 39-44, (2015) · doi:10.1016/j.jtbi.2015.01.010
[44] Ward, SM; Himmelstein, DS; Lancia, JK; Binder, LI, Tau oligomers and tau toxicity in neurodegenerative disease, Biochem. Soc. Trans., 40, 667-671, (2012) · doi:10.1042/BST20120134
[45] Morris, AM; Watzky, MA; Agar, JN; Finke, RG, Fitting neurological protein aggregation kinetic data via a 2-step, minimal/‘Ockham’s razor’ model: the Finke-Watzky mechanism of nucleation followed by autocatalytic surface growth, Biochemistry, 47, 2413-2427, (2008) · doi:10.1021/bi701899y
[46] Iashchishyn, IA; Sulskis, D.; Nguyen Ngoc, M.; Smirnovas, V.; Morozova-Roche, LA, Finke-Watzky two-step nucleation-autocatalysis model of S100A9 amyloid formation: protein misfolding as ‘nucleation’ event, ACS Chem. Neurosci., 8, 2152-2158, (2017) · doi:10.1021/acschemneuro.7b00251
[47] Combs, B.; Gamblin, TC, FTDP-17 tau mutations induce distinct effects on aggregation and microtubule interactions, Biochemistry, 51, 8597-8607, (2012) · doi:10.1021/bi3010818
[48] Holmes, BB; Diamond, MI, Prion-like properties of tau protein: the importance of extracellular tau as a therapeutic target, J. Biol. Chem., 289, 19 855-19 861, (2014) · doi:10.1074/jbc.R114.549295
[49] Walsh, DM; Selkoe, DJ, A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration, Nat. Rev. Neurosci., 17, 251-260, (2016) · doi:10.1038/nrn.2016.13
[50] Woerman, AL, Tau prions from Alzheimer’s disease and chronic traumatic encephalopathy patients propagate in cultured cells, Proc. Natl Acad. Sci. USA, 113, E8187-E8196, (2016) · doi:10.1073/pnas.1616344113
[51] Wang, Y.; Mandelkow, E., Tau in physiology and pathology, Nat. Rev. Neurosci., 17, 5-21, (2016) · doi:10.1038/nrc.2016.112
[52] Butner, KA; Kirschner, MW, Tau-protein binds to microtubules through a flexible array of distributed weak sites, J. Cell Biol., 115, 717-730, (1991) · doi:10.1083/jcb.115.3.717
[53] Castellani, RJ; Nunomura, A.; Lee, H.; Perry, G.; Smith, MA, Phosphorylated tau: toxic, protective, or none of the above, J. Alzheimers Disease, 14, 377-383, (2008) · doi:10.3233/JAD-2008-14404
[54] Fa, M., Extracellular tau oligomers produce an immediate impairment of LTP and memory, Sci. Rep., 6, 19393, (2016) · doi:10.1038/srep19393
[55] Voelzmann, A.; Okenve-Ramos, P.; Qu, Y.; Chojnowska-Monga, M.; del Cano-Espinel, M.; Prokop, A.; Sanchez-Soriano, N., Tau and spectraplakins promote synapse formation and maintenance through jun kinase and neuronal trafficking, eLife, 5, e14694, (2016) · doi:10.7554/elife.14694
[56] Li, Y.; Jung, P.; Brown, A., Axonal transport of neurofilaments: a single population of intermittently moving polymers, J. Neurosci., 32, 746-758, (2012) · doi:10.1523/JNEUROSCI.4926-11.2012
[57] Smith, DA; Simmons, RM, Models of motor-assisted transport of intracellular particles, Biophys. J., 80, 45-68, (2001) · doi:10.1016/S0006-3495(01)75994-2
[58] Kuznetsov, IA; Kuznetsov, AV, A coupled model of fast axonal transport of organelles and slow axonal transport of tau protein, Comput. Methods Biomech. Biomed. Engin., 18, 1485-1494, (2015) · doi:10.1080/10255842.2014.920830
[59] Coleman, M., Molecular signaling: how do axons die, Adv. Genet., 73, 185-217, (2011) · doi:10.1016/B978-0-12-380860-8.00005-7
[60] Das, U.; Wang, L.; Ganguly, A.; Saikia, JM; Wagner, SL; Koo, EH; Roy, S., Visualizing APP and BACE-1 approximation in neurons yields insight into the amyloidogenic pathway, Nat. Neurosci., 19, 55-64, (2016) · doi:10.1038/nn.4188
[61] Szodorai, A., APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle, J. Neurosci., 29, 14 534-14 544, (2009) · doi:10.1523/JNEUROSCI.1546-09.2009
[62] Brunholz, S.; Sisodia, S.; Lorenzo, A.; Deyts, C.; Kins, S.; Morfini, G., Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells, Exp. Brain Res., 217, 353-364, (2012) · doi:10.1007/s00221-011-2870-1
[63] Gunawardena, S.; Yang, G.; Goldstein, LSB, Presenilin controls kinesin-1 and dynein function during APP-vesicle transport \(in vivo\), Hum. Mol. Genet., 22, 3828-3843, (2013) · doi:10.1093/hmg/ddt237
[64] LaPointe, NE; Morfini, G.; Pigino, G.; Gaisina, IN; Kozikowski, AP; Binder, LI; Brady, ST, The amino terminus of tau inhibits kinesin-dependent axonal transport: Implications for filament toxicity, J. Neurosci. Res., 87, 440-451, (2009) · doi:10.1002/jnr.21850
[65] Millecamps, S.; Julien, J., Axonal transport deficits and neurodegenerative diseases, Nat. Rev. Neurosci., 14, 161-176, (2013) · doi:10.1038/nrn3380
[66] Monroy, BY; Sawyer, DL; Ackermann, BE; Borden, MM; Tan, TC; Ori-McKenney, KM, Competition between microtubule-associated proteins directs motor transport, bioRxiv, (2017) · doi:10.1101/180935
[67] Vershinin, M.; Carter, BC; Razafsky, DS; King, SJ; Gross, SP, Multiple-motor based transport and its regulation by tau, Proc. Natl Acad. Sci. USA, 104, 87-92, (2007) · doi:10.1073/pnas.0607919104
[68] Dixit, R.; Ross, JL; Goldman, YE; Holzbaur, ELF, Differential regulation of dynein and kinesin motor proteins by tau, Science, 319, 1086-1089, (2008) · doi:10.1126/science.1152993
[69] Iqbal, K.; Liu, F.; Gong, C-X; Grundke-Iqbal, I., Tau in Alzheimer disease and related tauopathies, Curr. Alzheimer Res., 7, 656-664, (2010) · doi:10.2174/156720510793611592
[70] Holtzman, DM; Morris, JC; Goate, AM, Alzheimer’s disease: the challenge of the second century, Sci. Trans. Med., 3, 77sr1, (2011) · doi:10.1126/scitranslmed.3002369
[71] Bentea, L.; Watzky, MA; Finke, RG, Sigmoidal nucleation and growth curves across nature fit by the Finke-Watzky model of slow continuous nucleation and autocatalytic growth: explicit formulas for the lag and growth times plus other key insights, J. Phys. Chem. C, 121, 5302-5312, (2017) · doi:10.1021/acs.jpcc.6b12021
[72] Buee, L., From tau phosphorylation to tau aggregation: What about neuronal death?, Biochem. Soc. Trans., 38, 967-972, (2010) · doi:10.1042/BST0380967
[73] Chen, H.; Reiss, PT; Tarpey, T., Optimally weighted L-2 distance for functional data, Biometrics, 70, 516-525, (2014) · Zbl 1299.62116 · doi:10.1111/biom.12161
[74] Zetterberg, H., Review: Tau in biofluids—relation to pathology, imaging and clinical features, Neuropathol. Appl. Neurobiol., 43, 194-199, (2017) · doi:10.1111/nan.12378
[75] Stokin, GB, Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease, Science, 307, 1282-1288, (2005) · doi:10.1126/science.1105681
[76] Stokin, GB; Goldstein, LSB, Axonal transport and Alzheimer’s disease, Annu. Rev. Biochem., 75, 607-627, (2006) · doi:10.1146/annurev.biochem.75.103004.142637
[77] Pilling, AD; Horiuchi, D.; Lively, CM; Saxton, WM, Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in drosophila motor axons, Mol. Biol. Cell, 17, 2057-2068, (2006) · doi:10.1091/mbc.E05-06-0526
[78] Marsden, IT; Minamide, LS; Bamburg, JR, Amyloid-beta-induced amyloid-beta secretion: a possible feed-forward mechanism in Alzheimer’s disease, J. Alzheimers Dis., 24, 681-691, (2011) · doi:10.3233/JAD-2011-101899
[79] Brady, ST; Siegel, GJ; Albers, RW; Price, DL, Axonal transport, Basic neurochemistry: principles of molecular, cellular, and medical neurobiology, 146–164, (2012), Elsevier
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.