×

Simulating tubulin-associated unit transport in an axon: using bootstrapping for estimating confidence intervals of best-fit parameter values obtained from indirect experimental data. (English) Zbl 1404.92055

Summary: In this paper, we first develop a model of axonal transport of tubulin-associated unit (tau) protein. We determine the minimum number of parameters necessary to reproduce published experimental results, reducing the number of parameters from 18 in the full model to eight in the simplified model. We then address the following questions: Is it possible to estimate parameter values for this model using the very limited amount of published experimental data? Furthermore, is it possible to estimate confidence intervals for the determined parameters? The idea that is explored in this paper is based on using bootstrapping. Model parameters were estimated by minimizing the objective function that simulates the discrepancy between the model predictions and experimental data. Residuals were then identified by calculating the differences between the experimental data and model predictions. New, surrogate ‘experimental’ data were generated by randomly resampling residuals. By finding sets of best-fit parameters for a large number of surrogate data the histograms for the model parameters were produced. These histograms were then used to estimate confidence intervals for the model parameters, by using the percentile bootstrap. Once the model was calibrated, we applied it to analysing some features of tau transport that are not accessible to current experimental techniques.

MSC:

92C20 Neural biology
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] Benarroch EE. (2016) Dynamics of microtubules and their associated proteins: recent insights and clinical implications. Neurology 86, 1911-1920. (doi:10.1212/WNL.0000000000002686) · doi:10.1212/WNL.0000000000002686
[2] Scholz T, Mandelkow E. (2014) Transport and diffusion of tau protein in neurons. Cell. Mol. Life Sci. 71, 3139-3150. (doi:10.1007/s00018-014-1610-7) · doi:10.1007/s00018-014-1610-7
[3] Conde C, Caceres A. (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci. 10, 319-332. (doi:10.1038/nrn2631) · doi:10.1038/nrn2631
[4] Peter SJ, Mofrad MRK. (2012) Computational modeling of axonal microtubule bundles under tension. Biophys. J. 102, 749-757. (doi:10.1016/j.bpj.2011.11.4024) · doi:10.1016/j.bpj.2011.11.4024
[5] Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G. (2014) Tau protein modifications and interactions: their role in function and dysfunction. Int. J. Mol. Sci. 15, 4671-4713. (doi:10.3390/ijms15034671) · doi:10.3390/ijms15034671
[6] Brandt R, Hundelt M, Shahani N. (2005) Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim. Biophys. Acta 1739, 331-354. (doi:10.1016/j.bbadis.2004.06.018) · doi:10.1016/j.bbadis.2004.06.018
[7] Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof P. (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev. 33, 95-130. (doi:10.1016/S0165-0173(00)00019-9) · doi:10.1016/S0165-0173(00)00019-9
[8] Gendron TF, Petrucelli L. (2009) The role of tau in neurodegeneration. Mol. Neurodegener. 4, 13. (doi:10.1186/1750-1326-4-13) · doi:10.1186/1750-1326-4-13
[9] Ittner LM, Goetz J. (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci. 12, 67-72. (doi:10.1038/nrn2967) · doi:10.1038/nrn2967
[10] Hanger DP, Lau DHW, Phillips EC, Bondulich MK, Guo T, Woodward BW, Pooler AM, Noble W. (2014) Intracellular and extracellular roles for tau in neurodegenerative disease. J. Alzheimers Dis. 40, S37-S45. (doi:10.3233/JAD-132054) · doi:10.3233/JAD-132054
[11] Ballatore C, Lee VMY, Trojanowski JQ. (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663-672. (doi:10.1038/nrn2194) · doi:10.1038/nrn2194
[12] Tai H, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT. (2012) The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am. J. Pathol. 181, 1426-1435. (doi:10.1016/j.ajpath.2012.06.033) · doi:10.1016/j.ajpath.2012.06.033
[13] Ittner A, Ke YD, van Eersel J, Gladbach A, Goetz J, Ittner LM. (2011) Brief update on different roles of tau in neurodegeneration. IUBMB Life 63, 495-502. (doi:10.1002/iub.467) · doi:10.1002/iub.467
[14] Cardenas-Aguayo MD, Gomez-Virgilio L, DeRosa S, Meraz-Rios MA. (2014) The role of tau oligomers in the onset of Alzheimer’s disease neuropathology. ACS Chem. Neurosci. 5, 1178-1191. (doi:10.1021/cn500148z) · doi:10.1021/cn500148z
[15] Stratmann K(2016) Precortical phase of Alzheimer’s disease (AD)-related tau cytoskeletal pathology. Brain Pathol. 26, 371-386. (doi:10.1111/bpa.12289) · doi:10.1111/bpa.12289
[16] Planel E(2008) Anesthesia-induced hyperphosphorylation detaches 3-repeat tau from microtubules without affecting their stability in vivo. J. Neurosci. 28, 12 798-12 807. (doi:10.1523/JNEUROSCI.4101-08.2008) · doi:10.1523/JNEUROSCI.4101-08.2008
[17] Amniai L, Barbier P, Sillen A, Wieruszeski J, Peyrot V, Lippens G, Landrieu I. (2009) Alzheimer disease specific phosphoepitopes of tau interfere with assembly of tubulin but not binding to microtubules. FASEB J. 23, 1146-1152. (doi:10.1096/fj.08-121590) · doi:10.1096/fj.08-121590
[18] Moreno H(2016) Tau pathology-mediated presynaptic dysfunction. Neuroscience 325, 30-38. (doi:10.1016/j.neuroscience.2016.03.044) · doi:10.1016/j.neuroscience.2016.03.044
[19] Pachima YI, Zhou L, Lei P, Gozes I. (2016) Microtubule-tau interaction as a therapeutic target for Alzheimer’s disease. J. Mol. Neurosci. 58, 145-152. (doi:10.1007/s12031-016-0715-x) · doi:10.1007/s12031-016-0715-x
[20] Lippens G, Landrieu I, Smet C, Huvent I, Gandhi NS, Gigant B, Despres C, Qi H, Lopez J. (2016) NMR meets tau: insights into its function and pathology. Biomolecules 6, 28. (doi:10.3390/biom6020028) · doi:10.3390/biom6020028
[21] Kuznetsov IA, Kuznetsov AV. (2015) A comparison between the diffusion-reaction and slow axonal transport models for predicting tau distribution along an axon. Math. Med. Biol. 32, 263-283. (doi:10.1093/imammb/dqu003) · Zbl 1325.92020 · doi:10.1093/imammb/dqu003
[22] Samsonov A, Yu JZ, Rasenick M, Popov SV. (2004) Tau interaction with microtubules in vivo. J. Cell. Sci. 117, 6129-6141. (doi:10.1242/jcs.01531) · doi:10.1242/jcs.01531
[23] Konzack S, Thies E, Marx A, Mandelkow EM, Mandelkow E. (2007) Swimming against the tide: mobility of the microtubule-associated protein tau in neurons. J. Neurosci. 27, 9916-9927. (doi:10.1523/JNEUROSCI.0927-07.2007) · doi:10.1523/JNEUROSCI.0927-07.2007
[24] Weissmann C, Reyher H, Gauthier A, Steinhoff H, Junge W, Brandt R. (2009) Microtubule binding and trapping at the tip of neurites regulate tau motion in living neurons. Traffic 10, 1655-1668. (doi:10.1111/j.1600-0854.2009.00977.x) · doi:10.1111/j.1600-0854.2009.00977.x
[25] Hinrichs MH, Jalal A, Brenner B, Mandelkow E, Kumar S, Scholz T. (2012) Tau protein diffuses along the microtubule lattice. J. Biol. Chem. 287, 38 559-38 568. (doi:10.1074/jbc.M112.369785) · doi:10.1074/jbc.M112.369785
[26] Utton M, Connell J, Asuni A, van Slegtenhorst M, Hutton M, de Silva R, Lees A, Miller C, Anderton B. (2002) The slow axonal transport of the microtubule-associated protein tau and the transport rates of different isoforms and mutants in cultured neurons. J. Neurosci. 22, 6394-6400.
[27] Utton M, Noble W, Hill J, Anderton B, Hanger D. (2005) Molecular motors implicated in the axonal transport of tau and alpha-synuclein. J. Cell. Sci. 118, 4645-4654. (doi:10.1242/jcs.02558) · doi:10.1242/jcs.02558
[28] Cuchillo-Ibanez I, Seereeram A, Byers HL, Leung K, Ward MA, Anderton BH, Hanger DP. (2008) Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. FASEB J. 22, 3186-3195. (doi:10.1096/fj.08-109181) · doi:10.1096/fj.08-109181
[29] Jung P, Brown A. (2009) Modeling the slowing of neurofilament transport along the mouse sciatic nerve. Phys. Biol. 6, 046002. (doi:10.1088/1478-3975/6/4/046002) · doi:10.1088/1478-3975/6/4/046002
[30] Li Y, Jung P, Brown A. (2012) Axonal transport of neurofilaments: a single population of intermittently moving polymers. J. Neurosci. 32, 746-758. (doi:10.1523/JNEUROSCI.4926-11.2012) · doi:10.1523/JNEUROSCI.4926-11.2012
[31] Kuznetsov IA, Kuznetsov AV. (2015) A coupled model of fast axonal transport of organelles and slow axonal transport of tau protein. Comput. Methods Biomech. Biomed. Eng. 18, 1485-1494. (doi:10.1080/10255842.2014.920830) · doi:10.1080/10255842.2014.920830
[32] Kuznetsov IA, Kuznetsov AV. (2016) Can numerical modeling help understand the fate of tau protein in the axon terminal? Comput. Methods Biomech. Biomed. Eng. 19, 115-125. (doi:10.1080/10255842.2014.994119) · doi:10.1080/10255842.2014.994119
[33] Kuznetsov IA, Kuznetsov AV. (2017) What mechanisms of tau protein transport could be responsible for the inverted tau concentration gradient in degenerating axons? Math. Med. Biol. 34, 125-150. (doi:10.1093/imammb/dqv041) · Zbl 1400.92267 · doi:10.1093/imammb/dqv041
[34] Kuznetsov IA, Kuznetsov AV. (2017) Utilization of the bootstrap method for determining confidence intervals of parameters for a model of MAP1B protein transport in axons. J. Theor. Biol. 419, 350-361. (doi:10.1016/j.jtbi.2017.02.017) · Zbl 1370.92017 · doi:10.1016/j.jtbi.2017.02.017
[35] Kuznetsov AV, Avramenko AA, Blinov DG. (2011) Investigation of the role of diffusivity on spreading, rate, and merging of the bell-shaped waves in slow axonal transport. Int. J. Numer. Method. Biomed. Eng. 27, 1040-1053. (doi:10.1002/cnm.1417) · Zbl 1219.92010 · doi:10.1002/cnm.1417
[36] Kuznetsov AV. (2012) An exact solution describing slow axonal transport of cytoskeletal elements: effect of a finite half-life. Proc. R. Soc. A 468, 3384-3397. (doi:10.1098/rspa.2012.0061) · Zbl 1371.92035 · doi:10.1098/rspa.2012.0061
[37] Lee RH, Mitchell CS. (2015) Axonal transport cargo motor count versus average transport velocity: is fast versus slow transport really single versus multiple motor transport? J. Theor. Biol. 370, 39-44. (doi:10.1016/j.jtbi.2015.01.010) · doi:10.1016/j.jtbi.2015.01.010
[38] Poppek D, Keck S, Ermak G, Jung T, Stolzing A, Ullrich O, Davies KJA, Grune T. (2006) Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem. J. 400, 511-520. (doi:10.1042/BJ20060463) · doi:10.1042/BJ20060463
[39] Kierszenbaum A. (2000) The 26S proteasome: ubiquitin-mediated proteolysis in the tunnel. Mol. Reprod. Dev. 57, 109-110. (doi:10.1002/1098-2795(200010)57:2<109::AID-MRD1>3.0.CO;2-9) · doi:10.1002/1098-2795(200010)57:2<109::AID-MRD1>3.0.CO;2-9
[40] Black MM, Slaughter T, Moshiach S, Obrocka M, Fischer I. (1996) Tau is enriched on dynamic microtubules in the distal region of growing axons. J. Neurosci. 16, 3601-3619.
[41] Voelzmann A, Okenve-Ramos P, Qu Y, Chojnowska-Monga M, del Cano-Espinel M, Prokop A, Sanchez-Soriano N. (2016) Tau and spectraplakins promote synapse formation and maintenance through Jun kinase and neuronal trafficking. eLife 5, e14694. (doi:10.7554/eLife.14694) · doi:10.7554/eLife.14694
[42] Beck JV, Arnold KJ. (1977) Parameter estimation in science and engineering.New York, NY: Wiley. · Zbl 0363.62020
[43] Sabatier P. (2000) Past and future of inverse problems. J. Math. Phys. 41, 4082-4124. (doi:10.1063/1.533336) · Zbl 0982.34010 · doi:10.1063/1.533336
[44] Zadeh KS. (2008) Parameter estimation in flow through partially saturated porous materials. J. Comput. Phys. 227, 10 243-10 262. (doi:10.1016/j.jcp.2008.09.007) · Zbl 1218.76030 · doi:10.1016/j.jcp.2008.09.007
[45] Zadeh KS, Montas HJ. (2014) Parametrization of flow processes in porous media by multiobjective inverse modeling. J. Comput. Phys. 259, 390-401. (doi:10.1016/j.jcp.2013.12.001) · Zbl 1349.76261 · doi:10.1016/j.jcp.2013.12.001
[46] Celia MA, Bouloutas ET, Zarba RL. (1990) A general mass-conservative numerical-solution for the unsaturated flow equation. Water Resour. Res. 26, 1483-1496. (doi:10.1029/90WR00196) · doi:10.1029/90WR00196
[47] Zadeh KS, Shah SB. (2010) Mathematical modeling and parameter estimation of axonal cargo transport. J. Comput. Neurosci. 28, 495-507. (doi:10.1007/s10827-010-0232-9) · doi:10.1007/s10827-010-0232-9
[48] Smith DA, Simmons RM. (2001) Models of motor-assisted transport of intracellular particles. Biophys. J. 80, 45-68. (doi:10.1016/S0006-3495(01)75994-2) · doi:10.1016/S0006-3495(01)75994-2
[49] Zadeh KS. (2011) A synergic simulation-optimization approach for analyzing biomolecular dynamics in living organisms. Comput. Biol. Med. 41, 24-36. (doi:10.1016/j.compbiomed.2010.11.002) · doi:10.1016/j.compbiomed.2010.11.002
[50] Kool JB, Parker JC, van Genuchten MT. (1987) Parameter estimation for unsaturated flow and transport models—a review. J. Hydrol. 91, 255-293. (doi:10.1016/0022-1694(87)90207-1) · doi:10.1016/0022-1694(87)90207-1
[51] Mercken M, Fischer I, Kosik K, Nixon R. (1995) Three distinct axonal transport rates for tau, tubulin, and other microtubule-associated proteins: evidence for dynamic interactions of tau with microtubules in vivo. J. Neurosci. 15, 8259-8267.
[52] Efron B, Tibshirani R. (1993) An introduction to the bootstrap.Boca Raton, FL: Chapman & Hall/CRC. · Zbl 0835.62038
[53] Davison AC, Hinkley DV. (1997) Bootstrap methods and their application.Cambridge, UK: Cambridge University Press. · Zbl 0886.62001
[54] Hall P. (1988) Theoretical comparison of bootstrap confidence intervals. Ann. Stat. 16, 927-953. (doi:10.1214/aos/1176350933) · Zbl 0663.62046 · doi:10.1214/aos/1176350933
[55] Chernick MR, LaBudde RA. (2011) An introduction to bootstrap methods with applications to R.Hoboken, NJ: Wiley.
[56] Kuznetsov IA, Kuznetsov AV. (2014) What tau distribution maximizes fast axonal transport toward the axonal synapse? Math. Biosci. 253, 19-24. (doi:10.1016/j.mbs.2014.04.001) · Zbl 1315.92016 · doi:10.1016/j.mbs.2014.04.001
[57] Xu Z, Tung V. (2001) Temporal and spatial variations in slow axonal transport velocity along peripheral motoneuron axons. Neuroscience 102, 193-200. (doi:10.1016/S0306-4522(00)00449-8) · doi:10.1016/S0306-4522(00)00449-8
[58] Watson DF, Hoffman PN, Fittro KP, Griffin JW. (1989) Neurofilament and tubulin transport slows along the course of mature motor axons. Brain Res. 477, 225-232. (doi:10.1016/0006-8993(89)91410-8) · doi:10.1016/0006-8993(89)91410-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.