×

Surface theory in discrete projective differential geometry. I: A canonical frame and an integrable discrete Demoulin system. (English) Zbl 1402.53008

Summary: We present the first steps of a procedure which discretizes surface theory in classical projective differential geometry in such a manner that underlying integrable structure is preserved. We propose a canonical frame in terms of which the associated projective Gauss-Weingarten and Gauss-Mainardi-Codazzi equations adopt compact forms. Based on a scaling symmetry which injects a parameter into the linear Gauss-Weingarten equations, we set down an algebraic classification scheme of discrete projective minimal surfaces which turns out to admit a geometric counterpart formulated in terms of discrete notions of Lie quadrics and their envelopes. In the case of discrete Demoulin surfaces, we derive a Bäcklund transformation for the underlying discrete Demoulin system and show how the latter may be formulated as a two-component generalization of the integrable discrete Tzitzéica equation which has originally been derived in a different context. At the geometric level, this connection leads to the retrieval of the standard discretization of affine spheres in affine differential geometry.

MSC:

53A20 Projective differential geometry
53A05 Surfaces in Euclidean and related spaces

References:

[1] Ovsienko, V.; Tabachnikov, S., Cambridge Tracts in Mathematics, \(Projective differential geometry. Old and new\), vol. 165, (2005), Cambridge University Press · Zbl 1073.53001
[2] Eastwood, M., Notes on projective differential geometry. In \(Symmetries and overdetermined systems of partial differential equations\) (eds M Eastwood, W Miller). IMA Volumes in Mathematics and its Applications, vol. 144, 41-60, (2008), Springer-Verlag · Zbl 1186.53020
[3] Ferapontov, EV; Schief, WK, Surfaces of Demoulin: differential geometry, Bäcklund transformation and integrability, J. Geom. Phys., 30, 343-363, (1999) · Zbl 0930.35164 · doi:10.1016/S0393-0440(98)00064-3
[4] Ferapontov, EV, Integrable systems in projective differential geometry, Kyushu J. Math., 54, 183-215, (2000) · Zbl 0999.53010 · doi:10.2206/kyushujm.54.183
[5] Wilczynski, EI, Projective-differential geometry of curved surfaces, Trans. Am. Math. Soc., 8, 233-260, (1907) · JFM 38.0633.03
[6] Wilczynski, EI, Projective-differential geometry of curved surfaces, Trans. Am. Math. Soc., 9, 79-120, (1908) · JFM 39.0671.02 · doi:10.2307/1988638
[7] Wilczynski, EI, Projective-differential geometry of curved surfaces, Trans. Am. Math. Soc., 10, 176-200, (1909) · JFM 40.0663.03 · doi:10.2307/1988681
[8] Rogers, C.; Schief, WK, \(Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory\). Cambridge Texts in Applied Mathematics, (2002), Cambridge University Press · Zbl 1019.53002
[9] Ferapontov, EV, Stationary Veselov-Novikov equation and isothermally asymptotic surfaces in projective-differential geometry, Differ. Geom. Appl., 11, 117-128, (1999) · Zbl 0990.53008 · doi:10.1016/S0926-2245(99)00028-5
[10] Bogdanov, LV, Veselov-Novikov equation as a natural two-dimensional generalization of the Korteweg-de Vries equation, Teoret. Mat. Fiz., 70, 309-314, (1987) · Zbl 0639.35072 · doi:10.1007/BF01039213
[11] Schief, WK, Lattice geometry of the discrete Darboux, KP, BKP and CKP equations. Menelaus’ and Carnot’s theorems, J. Nonlinear Math. Phys., 10, 194-208, (2003) · Zbl 1362.39014 · doi:10.2991/jnmp.2003.10.s2.17
[12] King, AD; Schief, WK, Application of an incidence theorem for conics: Cauchy problem and integrability of the dCKP equation, J. Phys. A: Math. Gen., 39, 1899-1913, (2006) · Zbl 1089.35073 · doi:10.1088/0305-4470/39/8/008
[13] Bol, G., \(Projektive Differentialgeometrie. 1. Teil\), (1950), Vandenhoeck & Ruprecht · Zbl 0173.23304
[14] Bol, G., \(Projektive Differentialgeometrie. 2. Teil\), (1954), Vandenhoeck & Ruprecht · Zbl 0173.23304
[15] Bobenko, AI; Suris, YB, \(Discrete differential geometry. Integrable structure\). Graduate Studies in Mathematics, vol. 98, (2008), American Mathematical Society · Zbl 1158.53001
[16] McCarthy, A.; Schief, WK, Discrete projective minimal surfaces. (http://arxiv.org/abs/1801.08428). To appear in \(Advances in Mathematics\), (2017)
[17] Huhnen-Venedey, E.; Rörig, T., Discretization of asymptotic line parametrizations using hyperboloid surface patches, Geom. Dedicata, 168, 265-289, (2014) · Zbl 1286.51015 · doi:10.1007/s10711-013-9830-9
[18] McCarthy, A.; Schief, WK, On the combinatorics of Demoulin transforms and (discrete) projective minimal surfaces, Discrete Comput. Geom., 57, 215-230, (2017) · Zbl 1361.53013 · doi:10.1007/s00454-016-9827-x
[19] Sasaki, T., Line congruence and transformation of projective surfaces, Kyushu J. Math., 60, 101-243, (2006) · Zbl 1104.53008 · doi:10.2206/kyushujm.60.101
[20] Finikov, SP, \(Projective differential geometry\), (1937), Leningrad, Russia: ONTI
[21] Schief, WK, Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link. In \(Symmetries and integrability of difference equations\) (eds P Clarkson, F Nijhoff). London Mathematical Society, Lecture Note Series, vol. 255, pp. 137-148. Cambridge, UK: Cambridge University Press, (1999) · Zbl 0924.35158
[22] Bobenko, AI; Schief, WK, Discrete indefinite affine spheres. In \(Discrete integrable geometry and physics\) (eds A Bobenko, R Seiler), pp. 113-138. Oxford, UK: Oxford University Press, (1999) · Zbl 0942.53013
[23] Schief, WK, Hyperbolic surfaces in centro-affine geometry. Integrability and discretization, Chaos Solitons Fractals, 11, 97-106, (2000) · Zbl 1115.53302 · doi:10.1016/S0960-0779(98)00273-2
[24] Thomsen, G., Über eine liniengeometrische Behandlungsweise der projektiven Flächentheorie und die projektive Geometrie der Systeme von Flächen zweiter Ordnung, Abh. Math. Sem. Univ. Hamburg, 4, 232-266, (1925) · JFM 52.0754.01 · doi:10.1007/BF02950731
[25] Schief, WK; Szereszewski, A., In preparation. Surface theory in discrete projective differential geometry. II. Wilczynski frames and the Plücker correspondence
[26] Nimmo, JJC; Schief, WK, Superposition principles associated with the Moutard transformation: an integrable discretization of a 2+1-dimensional sine-Gordon system, Proc. R. Soc. Lond. A, 453, 255-279, (1997) · Zbl 0867.35086 · doi:10.1098/rspa.1997.0015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.