×

Calderón’s reproducing formula and uncertainty principle for the continuous wavelet transform associated with the \(q\)-Bessel operator. (English) Zbl 1402.42007

The paper falls into the scope of the \(q\)-harmonic analysis associated to the \(q\)-Bessel operator \[ \Delta_{q,\nu} f(x) =\frac{f(q^{-1}x)-(1+q^{2\nu}) f(x) + q^{2\nu} f(qx)}{x^2}, \qquad x\neq 0. \] This analysis includes the associated \(q\)-Bessel Fourier transform, the \(q\)-Bessel translation operator, and the qconvolution product. The authors introduce the concepts of \(q\)-wavelet and continuous \(q\)-wavelet transform and prove the corresponding analogue of Calderón’s reproducing formula in the \(L^2\) setting. The uncertainty principle for these transforms is also studied.

MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
44A20 Integral transforms of special functions
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
33B15 Gamma, beta and polygamma functions
33D05 \(q\)-gamma functions, \(q\)-beta functions and integrals
Full Text: DOI

References:

[1] Bettaibi, N, Uncertainty principles in \(q^2\)-analogue Fourier analysis, Math. Sci. Res. J., 11, 590-602, (2007) · Zbl 1155.42001
[2] Calderón, AP, Intermediate spaces and interpolation, the complex method, Studia Math., 24, 113-190, (1964) · Zbl 0204.13703 · doi:10.4064/sm-24-2-113-190
[3] Daubechies, I.: Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics. SIAM Publication, Philadelphia (1992) · Zbl 0776.42018 · doi:10.1137/1.9781611970104
[4] Debnath, L.: Wavelet Transformation and their Applications. Birkhäuser, Boston (2002) · Zbl 1019.94003 · doi:10.1007/978-1-4612-0097-0
[5] Dhaouadi, L: Heisenberg uncertainty principle for the \(q\)-Bessel Fourier transform, preprint (2007)
[6] Dhaouadi, L, On the \(q\)-Bessel Fourier transform, Bull. Math. Anal. Appl., 5, 42-60, (2013) · Zbl 1314.33016
[7] Dhaouadi, L; Fitouhi, A; Kamel, J, Inequalities in \(q\)-Fourier analysis, J. Inequal. Pure Appl. Math., 7, 171, (2006) · Zbl 1232.26025
[8] Dhaouadi, L; Binous, W; Fitouhi, A, Paley-Wiener theorem for the \(q\)-Bessel transform and associated \(q\)-sampling formula, Expos. Math., 27, 55-72, (2009) · Zbl 1172.33308 · doi:10.1016/j.exmath.2008.07.002
[9] Dynkin, E.M.: Methods of the theory of singular integrals Littlewood-Paley theory and its applications. In: Khavin, V.P., Nikol’ski, N.K. (eds.) Commutative Harmonic Analysis IV. Springer, Berlin, (1992), pp. 97-194. (Encycl. Sci. Math., vol. 42) · JFM 41.0317.04
[10] Fitouhi, A; Bettaibi, N; Bettaieb, RH, On hardy’s inequality for symmetric integral transforms and analogous, Appl. Math. Comput., 198, 346-354, (2008) · Zbl 1132.26356
[11] Fitouhi, A; Dhaouadi, L, Positivity of the generalized translation associated with the \(q\)-Hankel transform, Constr. Approx., 34, 435-472, (2011) · Zbl 1247.33030 · doi:10.1007/s00365-011-9132-0
[12] Fitouhi, A; Hamza, M; Bouzeffour, F, The \(q-j_{α }\) Bessel function, J. Approx. Theory, 115, 144-166, (2002) · Zbl 1003.33007 · doi:10.1006/jath.2001.3645
[13] Fitouhi, A; Nouri, F; Guesmi, S, On Heisenberg and uncertainty principles for the \(q\)-Dunkl transform, JIPAM J. Inequal. Pure Appl. Math, 10, 42-10, (2009) · Zbl 1167.33312
[14] Fitouhi, A., Trim\(\grave{e}\)che, K.: J. L. Lions transmutation operators and generalized continuous wavelets. Preprint, Faculty of Sciences of Tunis (1995)
[15] Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley theory and the study of function spaces. In: CBMS-Conf. Leer. Notes 79, Am. Math. Soc., Providence, RI (1991) · Zbl 0757.42006
[16] Folland, GB; Sitaram, A, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl., 3, 207-238, (1997) · Zbl 0885.42006 · doi:10.1007/BF02649110
[17] Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton (1982) · Zbl 0508.42025
[18] Gasper, G., Rahman, M.: Basic Hypergeometric Series, Encycopedia of Mathematics and its Applications, vol. 35. Cambridge University Press, Cambridge (1990) · Zbl 0695.33001
[19] Grossmann, A; Morlet, J, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Anal., 15, 723-736, (1984) · Zbl 0578.42007 · doi:10.1137/0515056
[20] Holschneider, M; Tchamitchian, Ph, Pointwise analysis of riemann’s “nondifferentiable” function, Invent. Math., 105, 157-175, (1991) · Zbl 0741.26004 · doi:10.1007/BF01232261
[21] Hleili, M; Nefzi, B; Bsaissa, A, A variation on uncertainty principles for the generalized \(q\)-Bessel Fourier transform, J. Math. Anal. Appl., 440, 823-832, (2016) · Zbl 1342.42004 · doi:10.1016/j.jmaa.2016.03.053
[22] Jackson, FH, On a \(q\)-definite integrals, Q. J. Pure Appl. Math., 41, 193-203, (1910) · JFM 41.0317.04
[23] Kac, V.G., Cheung, P.: Quantum Calculus, Universitext. Springer, New York (2002) · Zbl 0986.05001 · doi:10.1007/978-1-4613-0071-7
[24] Koornwinder, TH; Koornwinder, TH (ed.), The continuous wavelet transform, 27-48, (1993), Singapore · doi:10.1142/9789814503747_0003
[25] Koelink, HT; Swarttouw, RF, On the zeros of the Hahn-exton \(q\)-Bessel function and associated \(q\)-lommel polynomials, J. Math. Anal. Appl., 186, 690-710, (1994) · Zbl 0811.33013 · doi:10.1006/jmaa.1994.1327
[26] Meyer, Y.: Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992) · Zbl 0776.42019
[27] Morlet, J; Arens, G; Fourgeau, E; Giard, D, Wave propagation and sampling theory, part1: complex signal land scattering in multilayer media, J. Geophys., 47, 203-221, (1982) · doi:10.1190/1.1441328
[28] Rösler, M; Voit, M, Uncertainty principle for Hankel transforms, Proc. Am. Math. Soc., 127, 183-194, (1999) · Zbl 0910.44003 · doi:10.1090/S0002-9939-99-04553-0
[29] Swarttouw, R.F.: The Hahn-Exton \(q\)-Bessel functions. Ph.D. Thesis, Delft Technical University (1992) · Zbl 0759.33008
[30] Trimèche, K.: Generalized Harmonic Analysis and Wavelet Packets. Gordon and Breach Science Publishers, Amsterdam (2001) · Zbl 1155.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.