×

Paley-Wiener theorem for the \(q\)-Bessel transform and associated \(q\)-sampling formula. (English) Zbl 1172.33308

For \(0 < q < 1\), \(v > -1\), and \(a = q^n, n \in \mathbb{Z}\), a \(q\)-Bessel Paley-Wiener space \(PW_{q,a}^v\) is defined (see Definition 1). Two characterizations of the functions in this space are obtained (see Theorems 2 and 3), one using the \(q\)-Bessel operator and the other using the \(q\)-Bessel translation operator. Finally, a \(q\)-sampling formula with sampling points \(q^n\), \(n \in \mathbb{Z}\)) is presented (see Theorem 4). To give a flavor of the results, let us quote the \(q\)-sampling formula:
Theorem 4. If \(f \in PW_{q,a}^v\), then for all \(z \in \mathbb{C}\) we have \[ \begin{split} f(z) = \frac{(1-q)^2}{(1-q^{2v+2})}c_{q,v}^2a^{2v+2}\sum_{n \in \mathbb{Z}} q^{n(2v+2)}f(q^n)\\ \times \left[ \frac{q^{2n}j_{v+1}(aq^n,q^2)j_v(aq^{-1}z,q^2) - z^2j_{v+1}(az,q^2)j_v(aq^{-1}q^n,q^2)}{q^{2n}-z^2}\right], \end{split} \] where \(j_v(x,q)\) is the normalized \(q\)-Bessel function of order \(v\).

MSC:

33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
33D60 Basic hypergeometric integrals and functions defined by them
33D90 Applications of basic hypergeometric functions
Full Text: DOI

References:

[1] Abreu, LD., A \(q\)-Sampling theorem related to the \(q\)-Hankel transform, Proc. Am. Math. Soc., 133, 4, 1197-1203 (2005) · Zbl 1062.33015
[2] Annaby, M. H.; Bustoz, J.; Ismail, M. E.H., On sampling theory and basic Sturm-Liouville systems, J. Comput. Appl. Math., 206, 1, 73-85 (2007) · Zbl 1128.39014
[3] L. Dhaouadi, Prolate Spheroidal Wave Functions in \(q\); L. Dhaouadi, Prolate Spheroidal Wave Functions in \(q\) · Zbl 1335.42033
[4] Dhaouadi, L.; Fitouhi, A.; El Kamel, J., Inequalities in \(q\)-Fourier analysis, J. Inequalities Pure Appl. Math., 7, 5, 171 (2006) · Zbl 1232.26025
[5] Fitouhi, A.; Dhaoudi, L., On a \(q\)-Paley-Wiener theorem, J. Math. Anal. Appl., 294, 17-23 (2004) · Zbl 1069.33016
[6] Fitouhi, A.; Hamza, M. M.; Bouzeffour, F., The \(q - j_\alpha\) Bessel function, J. Approx. Theory, 115, 144-166 (2002) · Zbl 1003.33007
[7] G. Gasper, M. Rahman, Basic Hypergeometric Series Encyclopedia of Mathematics and its Application, second ed., vol. 35, Cambridge University Press, Cambridge, UK, 2004.; G. Gasper, M. Rahman, Basic Hypergeometric Series Encyclopedia of Mathematics and its Application, second ed., vol. 35, Cambridge University Press, Cambridge, UK, 2004. · Zbl 1129.33005
[8] M.E.H. Ismail, A.I. Zayed, A \(q\); M.E.H. Ismail, A.I. Zayed, A \(q\) · Zbl 1053.33002
[9] Jackson, F. H., On \(q\)-Functions and a Certain Difference Operator, Trans. R. Soc. London, 46, 253-281 (1908)
[10] Jackson, F. H., On a \(q\)-definite integrals, Quart. J. Pure Appl. Math., 41, 193-203 (1910) · JFM 41.0317.04
[11] Koornwinder, T. H.; Swarttouw, R. F., On \(q\)-analogues of the Fourier and Hankel transforms, Trans. A.M.S, 333, 445-461 (1992) · Zbl 0759.33007
[12] Koelink, H. T.; Swarttouw, R. F., On the zeros of the Hahn-Exton \(q\)-Bessel function and associated \(q\)-Lommel polynomials, J. Math. Anal. Appl., 186, 650-710 (1994) · Zbl 0811.33013
[13] Koelink, H. T.; Swarttouw, R. F., A \(q\)-Analogue of Graf’s addition formula for the Hahn-Exton \(q\)-Bessel Function, J. Approx. Theory, 81, 260-273 (1995) · Zbl 0821.33010
[14] R.F. Swarttouw, The Hahn-Exton \(q\); R.F. Swarttouw, The Hahn-Exton \(q\) · Zbl 0759.33008
[15] Swarttouw, R. F.; Meijer, H. G., A \(q\)-analogue of the Wronskian and a second solution of the Hahn-Exton \(q\)-bessel difference equation, Proc. Am. Math. Soc., 129, 855-864 (1994) · Zbl 0822.33009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.