×

Existence and uniqueness of solutions of Schrödinger type stationary equations with very singular potentials without prescribing boundary conditions and some applications. (English) Zbl 1398.35085

This paper improves some of the results of the previous paper [J. I. Díaz et al., Discrete Contin. Dyn. Syst. 38, No. 2, 509–546 (2018; Zbl 1374.35178)]. The aim of the authors is to study the problem \[ \begin{aligned} Au=-\Delta u+\vec U(x),\;\nabla u+ V(x)u= f(x)\quad &\text{in }\Omega,\\ u=0\quad &\text{on }\partial\Omega,\end{aligned} \] where \(\Omega\) is an open bounded set in \(\mathbb{R}^n\), the potential \(V(x)\) is very singular, i.e., \(V(x)\geq ,d^{-r}\), \(r\geq 2\), \(d= \text{dist}(x,\partial\Omega)\) and \(\vec U(x)\) is a convective flow defined in the weak setting. The authors propose two equivalent definitions of a “very weak solution \(u\) in the sense of Brezis” and a “very weak distributional solution \(u\)” for \(f\in L^1(\Omega,\delta)\). The existence and uniqueness of a very weak solution \(u\) of the equation \(Au=f\) (new result) is proved even if no boundary conditions are prescribed.
On the other hand, it is shown that \(u\) necessarily satisfies in a suitable way the condition \(u=0\) on \(\partial\Omega\). Some new results concerning the \(m\)-accretivity of \(A\) are verified. For example
a) if \(\vec U\in L^\infty(\Omega)\) is a given convective flow and \(V\geq 0\) is locally integrable, then \(A\) is \(m\)-accretive for any \(0\leq \alpha<1\) in \(L^1(\Omega,\delta^\alpha)\),
b) if \(\alpha=1\), \(V\geq c\delta^{-2}\), then \(A\) is still \(m\)-accretive in \(L^1(\Omega,\delta)\).

MSC:

35J75 Singular elliptic equations
35J15 Second-order elliptic equations
35J25 Boundary value problems for second-order elliptic equations

Citations:

Zbl 1374.35178

References:

[1] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer New York, New York, NY, 2010. doi:10.1007/978-1-4419-5542-5. · Zbl 1197.35002
[2] C. Bennet, R. Sharpley, {\it Interpolation of Operators}. Academic Press, Boston (1988) · Zbl 0647.46057
[3] Ph. B´enilan, L. Boccardo, Th. Gallou¨et, R. Gariepy, M. Pierre, J.L. V´azquez, An {\it L}1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, {\it Ann. Scuala Norms Sup. Pisa}, 22 (1995) 241-273. · Zbl 0866.35037
[4] H. Br´ezis, {\it Functional Analysis, Sobolev Spaces and Partial Differential Equations, }Springer, New York, 2011. · Zbl 1220.46002
[5] H. Brezis and T. Cazenave, {\it Linear semigroups of contractions: the Hille-Yosida theory and some} {\it applications}. Publications du Laboratoire d’Analyse Num´erique, Universit´e Pierre et Marie Curie, Paris, 1993.
[6] H. Br´ezis and T. Cazenave.: A Nonlinear Heat Equation with Singular Initial Data. J. d’Analyse Math´ematique. 68, 277-304 (1996). · Zbl 0868.35058
[7] H. Br´ezis and W.A. Strauss, Semi-linear second-order elliptic equations in {\it L}1, J. Math. Soc. Japan. 25 (1973), 565-590. · Zbl 0278.35041
[8] X. Cabr´e and Y. Martel, Existence versus explosion instantan´ee pour des ´equations de la chaleur lin´eaires avec potentiel singulier, {\it Comptes Rendus l’Acad´emie des Sci. - Ser. I - Math. }329 (1999) 973-978. doi:10.1016/S0764-4442(00)88588-2. · Zbl 0940.35105
[9] M.G. Crandall and T.M. Liggett, Generation of Semi-Groups of Nonlinear Transformations on General Banach Spaces, {\it American Journal of Mathematics}. 93 No. 2 (1971) 265-298. · Zbl 0226.47038
[10] M. Fila, P. Souplet and F.B. Weissler, Linear and nonlinear heat equations in {\it L}{\it q}δspaces and universal bounds for global solutions. {\it Mathematische Annalen }113 (2001), 87-113. doi:10.1007/s002080100186 · Zbl 0993.35023
[11] W.M. Frank and D.J. Land, Singular potentials. Rev. Mod. Phys. 43(1) (1971) 36-98.
[12] D. Daners and P. Koch Medina, Abstract evolution equations, periodic problems and applications, Longman, Harlow, 1992. · Zbl 0789.35001
[13] J.I. D´ıaz, On the ambiguous treatment of Schr¨odinger equations for the infinite potential welland an alternative via flat solutions: The one-dimensional case. {\it Interfaces and Free Boundaries }17 3 (2015) 333-351. · Zbl 1328.81101
[14] J.I. D´ıaz, On the ambiguous treatment of the Schr¨odinger equation for the infinite potentialwell and an alternative via singular potentials: the multi-dimensional case. {\it SeMA-Journal }74 3 (2017) 225-278, DOI 10.1007/s40324-017-0115-3. · Zbl 1390.35298
[15] J. I. D´ıaz, D. G´omez-Castro, J.M. Rakotoson and R. Temam, Linear diffusion with singular absorption potential and/or unbounded convective flow: the weighted space approach. {\it Discrete and Continuous} {\it Dynamical Systems}. Volume 38, Number 2 (2018), 509-546. · Zbl 1374.35178
[16] J.I. D´ıaz and J.-M. Rakotoson, Elliptic Problems on the Space of Weighted With the Distance To the Boundary Integrable Functions Revisited. Electron. J. Differ. Equations Conf. 21 (2012), 45-59. · Zbl 1288.35224
[17] P. Dr´abek and J. Hern´andez, Quasilinear eigenvalue problems with singular weights for the {\it p }Laplacian. To appear.
[18] D. Gilbarg and S. Trudinger, {\it Elliptic partial differential equations of second order}, Springer, Berlin 2001. · Zbl 1042.35002
[19] D. G´omez-Castro, Homogenization and Shape Differentiation of Quasilinear Elliptic Problems. Applications to Chemical Engineering and Nanotechnology. Thesis at the UCM. 2017.
[20] A.D. Ionescu and C. E. Kenig, Uniqueness properties of solutions of Schr¨odinger equations, J. Funct. Anal. 232 (2006), no. 1, 90-136., https://doi.org/10.1016/j.jfa.2005.06.005 i · Zbl 1092.35104
[21] J.M. Rakotoson, {\it Linear equations with variable coefficients and Banach function spaces }To appear.
[22] J.M. Rakotoson, Regularity of a very weak solution for parabolic equations and applications {\it Advances} {\it in Differential Equations }16 (2011) 867-894. · Zbl 1231.35033
[23] J.M. Rakotoson, New Hardy inequalities and behaviour of linear elliptic equations {\it Journal of Func-} {\it tional Analysis }263 (2012) 2893-2920. · Zbl 1257.35008
[24] M. Reed and B. Simon, {\it Methods of Modern Mathematical Physics, Vol. II}, Academic Press, New York 1975. · Zbl 0308.47002
[25] L. Orsina and A. Ponce, Hopf potentials for the Schr¨odinger operator (version of 12 April 2017). (Received October 21, 2017){\it Jes´us Ildefonso D´ıaz} {\it Instituto de Matem´atica Interdisciplinar & Dpto. de Matem´atica Aplicada} {\it Universidad Complutense de Madrid} {\it Plaza de las Ciencias, 3, 28040 Madrid, Spain,} {\it e-mail:}jidiaz@ucm.es {\it D. G´omez-Castro} {\it Instituto de Matem´atica Interdisciplinar & Dpto. de Matem´atica Aplicada} {\it Universidad Complutense de Madrid} {\it Plaza de las Ciencias, 3, 28040 Madrid, Spain.} {\it e-mail:}dgcastro@ucm.es {\it Jean Michel Rakotoson} {\it Universit´e de Poitiers,} {\it Laboratoire de Math´ematiques et Applications - UMR CNRS} {\it 7348 - SP2MI, France} {\it Bd Marie et Pierre Curie, T´el´eport 2, F-86962 Chasseneuil} {\it Futuroscope Cedex, France,} {\it e-mail:}rako@math.univ-poitiers.fr Differential Equations & Applications www.ele-math.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.