×

Non-stationary almost sure invariance principle for hyperbolic systems with singularities. (English) Zbl 1401.37044

Summary: We investigate a wide class of two-dimensional hyperbolic systems with singularities, and prove the almost sure invariance principle (ASIP) for the random process generated by sequences of dynamically Hölder observables. The observables could be unbounded, and the process may be non-stationary and need not have linearly growing variances. Our results apply to Anosov diffeomorphisms, Sinai dispersing billiards and their perturbations. The random processes under consideration are related to the fluctuation of Lyapunov exponents, the shrinking target problem, etc.

MSC:

37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
37A25 Ergodicity, mixing, rates of mixing
60F17 Functional limit theorems; invariance principles

References:

[1] Baladi, V.; Tsujii, M., Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier (Grenoble), 57, 127-154, (2007) · Zbl 1138.37011 · doi:10.5802/aif.2253
[2] Baladi, V.; Gouëzel, S., Good Banach spaces for piecewise hyperbolic maps via interpolation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 1453-1481, (2009) · Zbl 1183.37045 · doi:10.1016/j.anihpc.2009.01.001
[3] Baladi, V.; Gouëzel, S., Banach spaces for piecewise cone-hyperbolic maps, J. Mod. Dyn., 4, 91-137, (2010) · Zbl 1226.37008 · doi:10.3934/jmd.2010.4.91
[4] Balint, P.; Gouëzel, S., Limit theorems in the stadium billiard, Commun. Math. Phys., 263, 461-512, (2006) · Zbl 1170.37314 · doi:10.1007/s00220-005-1511-6
[5] Balint, P.; Chernov, N.; Dolgopyat, D., Limit theorems for dispersing billiards with cusps, Commun. Math. Phys., 308, 479-510, (2011) · Zbl 1241.37005 · doi:10.1007/s00220-011-1342-6
[6] Berkes, I.; Philipp, W., Approximation theorems for independent and weakly dependent random vectors, Ann. Probab., 7, 29-54, (1979) · Zbl 0392.60024 · doi:10.1214/aop/1176995146
[7] Blank, M.; Keller, G.; Liverani, C., Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity, 15, 1905-1973, (2002) · Zbl 1021.37015 · doi:10.1088/0951-7715/15/6/309
[8] Bowen, R., Markov partitions for Axiom A diffeomorphisms, Am. J. Math., 92, 725-747, (1970) · Zbl 0208.25901 · doi:10.2307/2373370
[9] Bowen, R.: Equilibrium States and the Ergodic Theory of Axiom A Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975) · Zbl 0327.58010 · doi:10.1007/BFb0081279
[10] Bunimovich, LA; Sinai, Ya G., Markov partitions for dispersing billiards, Commun. Math. Phys., 73, 247-280, (1980) · Zbl 0453.60098 · doi:10.1007/BF01942372
[11] Bunimovich, LA; Sinai, YG; Chernov, NI, Markov partitions for two-dimensional hyperbolic billiards, Russian Math. Surveys, 45, 105-152, (1990) · Zbl 0721.58036 · doi:10.1070/RM1990v045n03ABEH002355
[12] Bunimovich, LA; Sinai, YG; Chernov, NI, Statistical properties of two-dimensional hyperbolic billiards, Russian Math. Surveys., 46, 47-106, (1991) · Zbl 0780.58029 · doi:10.1070/RM1991v046n04ABEH002827
[13] Chernov, NI, Limit theorems and Markov approximations for chaotic dynamical systems, Probab. Theory Relat. Fields, 101, 321-362, (1995) · Zbl 0839.60025 · doi:10.1007/BF01200500
[14] Chernov, NI, Decay of correlations in dispersing billiards, J. Stat. Phys., 94, 513-556, (1999) · Zbl 1047.37503 · doi:10.1023/A:1004581304939
[15] Chernov, NI, Sinai billiards under small external forces, Ann. Henri Poincare, 2, 197-236, (2001) · Zbl 0994.70009 · doi:10.1007/PL00001034
[16] Chernov, NI, Advanced statistical properties of dispersing billiards, J. Stat. Phys., 122, 1061-1094, (2006) · Zbl 1098.82020 · doi:10.1007/s10955-006-9036-8
[17] Chernov, NI, Sinai billiards under small external forces II, Ann. Henri Poincare, 9, 91-107, (2008) · Zbl 1211.70011 · doi:10.1007/s00023-007-0351-7
[18] Chernov, N.I., Dolgopyat, D.: Brownian Brownian Motion-I, vol. 198. Memoirs of AMS, Providence (2009) · Zbl 1173.60003
[19] Chernov, NI; Kleinbock, D., Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math., 122, 1-27, (2001) · Zbl 0997.37002 · doi:10.1007/BF02809888
[20] Chernov, N.I., Markarian, R.: Chaotic Billiards, Mathematical Surveys Monographs, vol. 127. AMS, Providence (2006) · Zbl 1101.37001 · doi:10.1090/surv/127
[21] Chernov, N.; Markarian, R., Dispersing billiards with cusps: slow decay of correlations, Commun. Math. Phys., 270, 727-758, (2007) · Zbl 1113.37020 · doi:10.1007/s00220-006-0169-z
[22] Chernov, N.; Zhang, H-K, Billiards with polynomial mixing rates, Nonlineartity, 4, 1527-1553, (2005) · Zbl 1143.37314 · doi:10.1088/0951-7715/18/4/006
[23] Chernov, N.; Zhang, H-K, A family of chaotic billiards with variable mixing rates, Stoch. Dyn., 5, 535-553, (2005) · Zbl 1111.37029 · doi:10.1142/S0219493705001572
[24] Chernov, N.; Zhang, H-K, Improved estimate for correlations in billiards, Commun. Math. Phys., 277, 305-321, (2008) · Zbl 1143.37024 · doi:10.1007/s00220-007-0360-x
[25] Chernov, N.; Zhang, H-K, On statistical properties of hyperbolic systems with singularities, J. Stat. Phys., 136, 615-642, (2009) · Zbl 1181.37052 · doi:10.1007/s10955-009-9804-3
[26] Cuny, C., Pointwise ergodic theorems with rate with applications to limit theorems for stationary processes, Stoch. Dyn., 11, 135-155, (2011) · Zbl 1210.60031 · doi:10.1142/S0219493711003206
[27] Cuny, C.; Merlevède, F., Strong invariance principles with rate for “reverse” martingale differences and applications, J. Theor. Probab., 28, 137-183, (2015) · Zbl 1353.60031 · doi:10.1007/s10959-013-0506-z
[28] Demers, M.; Liverani, C., Stability of statistical properties in two-dimensional piecewise hyperbolic maps, Trans. Am. Math. Soc., 360, 4777-4814, (2008) · Zbl 1153.37019 · doi:10.1090/S0002-9947-08-04464-4
[29] Demers, M.; Zhang, H-K, Spectral analysis of the transfer operator for the Lorentz gas, J. Mod. Dyn., 5, 665-709, (2011) · Zbl 1321.37034 · doi:10.3934/jmd.2011.5.665
[30] Demers, M.; Zhang, H-K, A functional analytic approach to perturbations of the Lorentz gas, Commun. Math. Phys., 324, 767-830, (2013) · Zbl 1385.37050 · doi:10.1007/s00220-013-1820-0
[31] Demers, M.; Zhang, H-K, Spectral analysis of hyperbolic systems with singularities, Nonlinearity, 27, 379-433, (2014) · Zbl 1347.37070 · doi:10.1088/0951-7715/27/3/379
[32] Denker, M.: The Central Limit Theorem for Dynamical Systems, Dynamical Systems and Ergodic Theory (Warsaw, 1986), vol. 23, pp. 33-62. Banach Center Publications, PWN, Warsaw (1989) · Zbl 0695.60026
[33] Eberlein, E., On strong invariance principles under dependence assumptions, Ann. Probab., 14, 260-270, (1986) · Zbl 0589.60031 · doi:10.1214/aop/1176992626
[34] Fayad, B., Mixing in the absence of the shrinking target property, Bull. Lond. Math. Soc., 38, 829-838, (2006) · Zbl 1194.37013 · doi:10.1112/S0024609306018546
[35] Gallavotti, G.; Ornstein, D., Billiards and Bernoulli schemes, Commun. Math. Phys., 38, 83-101, (1974) · Zbl 0313.58017 · doi:10.1007/BF01651505
[36] Gouëzel, S., Almost sure invariance principle for dynamical systems by spectral methods, Ann. Probab., 38, 1639-1671, (2010) · Zbl 1207.60026 · doi:10.1214/10-AOP525
[37] Haydn, N.; Nicol, M.; Vaienti, S.; Zhang, L., Central limit theorems for the shrinking target problem, J. Stat. Phys., 153, 864-887, (2013) · Zbl 1288.37003 · doi:10.1007/s10955-013-0860-3
[38] Haydn, N.; Nicol, M.; Török, A.; Vaienti, S., Almost sure invariance principle for sequential and non-stationary dynamical systems, Trans. Am. Math. Soc., 369, 5293-5316, (2017) · Zbl 1366.37143 · doi:10.1090/tran/6812
[39] Hill, R.; Velani, S., Ergodic theory of shrinking targets, Invent. Math., 119, 175-198, (1995) · Zbl 0834.28009 · doi:10.1007/BF01245179
[40] Ibragimov, I.A., Linnik, Y.V.: Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Gröningen (1971) · Zbl 0219.60027
[41] Katok, A., Strelcyn, J.M.: Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities. Lecture Notes in Mathematics, vol. 1222. Springer, New York (1986) · Zbl 0658.58001 · doi:10.1007/BFb0099031
[42] Korepanov, A., Equidistribution for nonuniformly expanding dynamical systems, and application to the almost sure invariance principle, Commun. Math. Phys., 359, 1123-1138, (2018) · Zbl 1396.37038 · doi:10.1007/s00220-017-3062-z
[43] Marcinkiewicz, J.; Zygmund, A., Sur les fonctions indépendantes, Fund. Math., 29, 60-90, (1937) · JFM 63.0946.02
[44] Melbourne, I.; Nicol, M., Almost sure invariance principle for nonuniformly hyperbolic systems, Commun. Math. Phys., 260, 131-146, (2005) · Zbl 1084.37024 · doi:10.1007/s00220-005-1407-5
[45] Melbourne, I.; Nicol, M., A vector-valued almost sure invariance principle for hyperbolic dynamical systems, Ann. Probab., 37, 478-505, (2009) · Zbl 1176.37006 · doi:10.1214/08-AOP410
[46] Markarian, R., Billiards with polynomial decay of correlations, Ergod. Theory Dyn. Syst., 24, 177-197, (2004) · Zbl 1115.37037 · doi:10.1017/S0143385703000270
[47] Pesin, Ya, Characteristic Lyapunov exponents, and smooth ergodic theory, Russ. Math. Surv., 32, 55-114, (1977) · Zbl 0383.58011 · doi:10.1070/RM1977v032n04ABEH001639
[48] Pesin, Y., Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties, Ergod. Theory Dyn. Syst., 12, 123-152, (1992) · Zbl 0774.58029 · doi:10.1017/S0143385700006635
[49] Philipp, W., Stout, W.: Almost Sure Invariance Principles for Partial Sums of Weakly Dependent Random Variables, vol. 161. Memoirs of the American Mathematical Society, Providence (1975) · Zbl 0361.60007
[50] Ruelle, D.: Thermodynamic Formalism, Encyclopedia of Mathematics and Its Applications, vol. 5. Addison-Wesley, Boston (1978) · Zbl 0401.28016
[51] Sataev, E., Invariant measures for hyperbolic maps with singularities, Russ. Math. Surv., 47, 191-251, (1992) · Zbl 0795.58036 · doi:10.1070/RM1992v047n01ABEH000864
[52] Sinai, YG, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Russ. Math. Surv., 25, 137-189, (1970) · Zbl 0263.58011 · doi:10.1070/RM1970v025n02ABEH003794
[53] Sinai, YG, Gibbs measures in ergodic theory, Russ. Math. Surv., 27, 21-69, (1972) · Zbl 0246.28008 · doi:10.1070/RM1972v027n04ABEH001383
[54] Sarig, O., Subexponential decay of correlations, Invent. Math., 150, 629-653, (2002) · Zbl 1042.37005 · doi:10.1007/s00222-002-0248-5
[55] Shao, QM, Almost sure invariance principles for mixing sequences of random variables, Stoch. Process. Appl., 48, 319-334, (1993) · Zbl 0793.60038 · doi:10.1016/0304-4149(93)90051-5
[56] Shao, QM; Lu, CR, Strong approximations for partial sums of weakly dependent random variables, Sci. Sinica Ser. A, 30, 575-587, (1987) · Zbl 0625.60032
[57] Stenlund, M., A vector-valued almost sure invariance principle for Sinai billiards with random scatterers, Commun. Math. Phys., 325, 879-916, (2014) · Zbl 1296.37028 · doi:10.1007/s00220-013-1870-3
[58] Stenlund, M.; Young, LS; Zhang, H-K, Dispersing billiards with moving scatterers, Commun. Math. Phys., 322, 909-955, (2013) · Zbl 1304.37024 · doi:10.1007/s00220-013-1746-6
[59] Szász, D.; Varjú, T., Local limit theorem for Lorentz process and its recurrence in the plane, Ergod. Theory Dyn. Syst., 24, 257-278, (2004) · Zbl 1115.37009 · doi:10.1017/S0143385703000439
[60] Wu, WB, Strong invariance principles for dependent random variables, Ann. Probab., 35, 2294-2320, (2007) · Zbl 1166.60307 · doi:10.1214/009117907000000060
[61] Yokoyama, R., Moment bounds for stationary mixing sequences, Z. Wahrsch. Verw. Gebiete, 52, 45-57, (1980) · Zbl 0407.60002 · doi:10.1007/BF00534186
[62] Young, LS, Statistical properties of systems with some hyperbolicity including certain billiards, Ann. Math., 147, 585-650, (1998) · Zbl 0945.37009 · doi:10.2307/120960
[63] Young, LS, Recurrence times and rates of mixing, Israel J. Math., 110, 153-188, (1999) · Zbl 0983.37005 · doi:10.1007/BF02808180
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.