×

Stability of statistical properties in two-dimensional piecewise hyperbolic maps. (English) Zbl 1153.37019

In recent years, many authors have sought to establish in the hyperbolic setting the functional analytic approach developed for one-dimensional piecewise expanding maps. The approach is, very roughly speaking, to directly study the action of the transfer operator on appropriate spaces of distributions.
This approach was successfully extended to multi-dimensional expanding maps, but its application to hyperbolic systems with discontinuities has been lacking until recently, see the references of C. Liverani [Dynamical systems. Part II. Topological, geometrical and ergodic properties of dynamics, Selected papers from the Research Trimester held in Pisa, Italy, February 4-April 26, 2002, Pisa: Scuola Normale Superiore, Pubblicazioni del Centro di Ricerca Matematica Ennio de Giorgi, Proceedings, 185–237 (2003; Zbl 1066.37013)]. As far as hyperbolic systems with discontinuities are concerned, the only available approaches are Ya. B. Pesin [Ergodic Theory Dyn. Syst. 12, 123–151 (1992; Zbl 0774.58029)] and L.-S. Young [Ann. Math. (2) 147, No. 3, 585–650 (1998; Zbl 0945.37009)]. Such approaches require a very deep preliminary understanding of the regularity properties of the invariant foliations and are not well-suited to the study of perturbations of the systems under considerations.
The present paper under review makes a first step in overcoming the difficulty of discontinuities by showing that in the two-dimensional case the functional analytic approach can be carried out successfully. In this paper, for two-dimensional piecewise hyperbolic maps with uniformly bounded second derivatives, the authors obtain a complete description of the SRB measures, their statistical properties and their stability with respect to many types of perturbations including deterministic and random perturbations and holes.

MSC:

37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.

References:

[1] V. I. Bakhtin, A direct method for constructing an invariant measure on a hyperbolic attractor, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 5, 934 – 957 (Russian, with Russian summary); English transl., Russian Acad. Sci. Izv. Math. 41 (1993), no. 2, 207 – 227. · Zbl 0788.58040 · doi:10.1070/IM1993v041n02ABEH002259
[2] Viviane Baladi, Positive transfer operators and decay of correlations, Advanced Series in Nonlinear Dynamics, vol. 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. · Zbl 1012.37015
[3] Viviane Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: \?^{\infty } foliations, Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 123 – 135. · Zbl 1158.37304 · doi:10.1090/conm/385/07194
[4] Viviane Baladi and Masato Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 1, 127 – 154 (English, with English and French summaries). · Zbl 1138.37011
[5] V. Baladi and L.-S. Young, On the spectra of randomly perturbed expanding maps, Comm. Math. Phys. 156 (1993), no. 2, 355 – 385. · Zbl 0809.60101
[6] H. van den Bedem and N. Chernov, Expanding maps of an interval with holes, Ergodic Theory Dynam. Systems 22 (2002), no. 3, 637 – 654. · Zbl 1022.37024 · doi:10.1017/S0143385702000329
[7] Michael Blank, Gerhard Keller, and Carlangelo Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps, Nonlinearity 15 (2002), no. 6, 1905 – 1973. · Zbl 1021.37015 · doi:10.1088/0951-7715/15/6/309
[8] Jérôme Buzzi, Absolutely continuous invariant probability measures for arbitrary expanding piecewise \?-analytic mappings of the plane, Ergodic Theory Dynam. Systems 20 (2000), no. 3, 697 – 708. · Zbl 0973.37003 · doi:10.1017/S0143385700000377
[9] Jérôme Buzzi and Gerhard Keller, Zeta functions and transfer operators for multidimensional piecewise affine and expanding maps, Ergodic Theory Dynam. Systems 21 (2001), no. 3, 689 – 716. · Zbl 0990.37017 · doi:10.1017/S0143385701001341
[10] N. N. Čencova, A natural invariant measure on Smale’s horseshoe, Soviet Math. Dokl. 23 (1981), 87-91. · Zbl 0475.58013
[11] J.-R. Chazottes and S. Gouëzel, On almost-sure versions of classical limit theorems for dynamical systems, Probab. Theory Related Fields 138 (2007), no. 1-2, 195 – 234. · Zbl 1126.60025 · doi:10.1007/s00440-006-0021-6
[12] N. Chernov, Advanced statistical properties of dispersing billiards, J. Stat. Phys. 122 (2006), no. 6, 1061 – 1094. · Zbl 1098.82020 · doi:10.1007/s10955-006-9036-8
[13] N. Chernov, D.Dolgopyat, Brownian Brownian Motion - I, to appear in Memoirs of AMS. · Zbl 1173.60003
[14] N. Chernov and R. Markarian, Ergodic properties of Anosov maps with rectangular holes, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 271 – 314. · Zbl 0893.58035 · doi:10.1007/BF01233395
[15] N. Chernov and R. Markarian, Anosov maps with rectangular holes. Nonergodic cases, Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 315 – 342. · Zbl 0893.58036 · doi:10.1007/BF01233396
[16] N. Chernov, R. Markarian, and S. Troubetzkoy, Conditionally invariant measures for Anosov maps with small holes, Ergodic Theory Dynam. Systems 18 (1998), no. 5, 1049 – 1073. · Zbl 0982.37011 · doi:10.1017/S0143385798117492
[17] N. Chernov, R. Markarian, and S. Troubetzkoy, Invariant measures for Anosov maps with small holes, Ergodic Theory Dynam. Systems 20 (2000), no. 4, 1007 – 1044. · Zbl 0963.37030 · doi:10.1017/S0143385700000560
[18] N. Chernov and L. S. Young, Decay of correlations for Lorentz gases and hard balls, Hard ball systems and the Lorentz gas, Encyclopaedia Math. Sci., vol. 101, Springer, Berlin, 2000, pp. 89 – 120. · Zbl 0977.37001 · doi:10.1007/978-3-662-04062-1_5
[19] Mark F. Demers, Markov extensions for dynamical systems with holes: an application to expanding maps of the interval, Israel J. Math. 146 (2005), 189 – 221. · Zbl 1079.37031 · doi:10.1007/BF02773533
[20] Mark F. Demers, Markov extensions and conditionally invariant measures for certain logistic maps with small holes, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1139 – 1171. · Zbl 1098.37035 · doi:10.1017/S0143385704000963
[21] Mark F. Demers and Lai-Sang Young, Escape rates and conditionally invariant measures, Nonlinearity 19 (2006), no. 2, 377 – 397. · Zbl 1134.37322 · doi:10.1088/0951-7715/19/2/008
[22] Sébastien Gouëzel and Carlangelo Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems 26 (2006), no. 1, 189 – 217. · Zbl 1088.37010 · doi:10.1017/S0143385705000374
[23] Hubert Hennion and Loïc Hervé, Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness, Lecture Notes in Mathematics, vol. 1766, Springer-Verlag, Berlin, 2001. · Zbl 0983.60005
[24] Gerhard Keller, On the rate of convergence to equilibrium in one-dimensional systems, Comm. Math. Phys. 96 (1984), no. 2, 181 – 193. · Zbl 0576.58016
[25] Gerhard Keller and Carlangelo Liverani, Stability of the spectrum for transfer operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 1, 141 – 152. · Zbl 0956.37003
[26] A. Lasota and James A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481 – 488 (1974). · Zbl 0298.28015
[27] Carlangelo Liverani, Decay of correlations, Ann. of Math. (2) 142 (1995), no. 2, 239 – 301. · Zbl 0871.58059 · doi:10.2307/2118636
[28] Carlangelo Liverani, Invariant measures and their properties. A functional analytic point of view, Dynamical systems. Part II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2003, pp. 185 – 237. · Zbl 1066.37013
[29] Carlangelo Liverani, Fredholm determinants, Anosov maps and Ruelle resonances, Discrete Contin. Dyn. Syst. 13 (2005), no. 5, 1203 – 1215. · Zbl 1160.37330 · doi:10.3934/dcds.2005.13.1203
[30] Carlangelo Liverani and Véronique Maume-Deschamps, Lasota-Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 3, 385 – 412 (English, with English and French summaries). · Zbl 1021.37002 · doi:10.1016/S0246-0203(02)00005-5
[31] Carlangelo Liverani and Maciej P. Wojtkowski, Ergodicity in Hamiltonian systems, Dynamics reported, Dynam. Report. Expositions Dynam. Systems (N.S.), vol. 4, Springer, Berlin, 1995, pp. 130 – 202. · Zbl 0824.58033
[32] Artur Lopes and Roberto Markarian, Open billiards: invariant and conditionally invariant probabilities on Cantor sets, SIAM J. Appl. Math. 56 (1996), no. 2, 651 – 680. · Zbl 0852.58056 · doi:10.1137/S0036139995279433
[33] William Parry and Mark Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. (2) 118 (1983), no. 3, 573 – 591. · Zbl 0537.58038 · doi:10.2307/2006982
[34] William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). · Zbl 0726.58003
[35] Ya. B. Pesin, Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties, Ergodic Theory Dynam. Systems 12 (1992), no. 1, 123 – 151. · Zbl 0774.58029 · doi:10.1017/S0143385700006635
[36] David Ruelle, Locating resonances for Axiom A dynamical systems, J. Statist. Phys. 44 (1986), no. 3-4, 281 – 292. · Zbl 0655.58026 · doi:10.1007/BF01011300
[37] D. Ruelle, Resonances for Axiom \? flows, J. Differential Geom. 25 (1987), no. 1, 99 – 116. · Zbl 0658.58026
[38] Hans H. Rugh, The correlation spectrum for hyperbolic analytic maps, Nonlinearity 5 (1992), no. 6, 1237 – 1263. · Zbl 0768.58027
[39] Hans Henrik Rugh, Fredholm determinants for real-analytic hyperbolic diffeomorphisms of surfaces, XIth International Congress of Mathematical Physics (Paris, 1994) Int. Press, Cambridge, MA, 1995, pp. 297 – 303. · Zbl 1052.37506
[40] Hans Henrik Rugh, Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems, Ergodic Theory Dynam. Systems 16 (1996), no. 4, 805 – 819. · Zbl 0948.37003 · doi:10.1017/S0143385700009111
[41] Benoît Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israel J. Math. 116 (2000), 223 – 248. · Zbl 0982.37003 · doi:10.1007/BF02773219
[42] Masato Tsujii, Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane, Comm. Math. Phys. 208 (2000), no. 3, 605 – 622. · Zbl 0989.37015 · doi:10.1007/s002200050003
[43] Masato Tsujii, Absolutely continuous invariant measures for expanding piecewise linear maps, Invent. Math. 143 (2001), no. 2, 349 – 373. · Zbl 0969.37012 · doi:10.1007/PL00005797
[44] Lai-Sang Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (1998), no. 3, 585 – 650. · Zbl 0945.37009 · doi:10.2307/120960
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.