×

Multiple solutions to a class of \(p(x)\)-biharmonic differential inclusion problem with no-flux boundary condition. (English) Zbl 1400.35242

Summary: In this paper, we obtain the existence of at least two nontrivial solutions for a \(p(x)\)-biharmonic differential inclusion problem with no-flux boundary condition. Our approach is variational and it is based on the nonsmooth critical point theory for locally Lipschitz functions.

MSC:

35R70 PDEs with multivalued right-hand sides
35J20 Variational methods for second-order elliptic equations
35J70 Degenerate elliptic equations
Full Text: DOI

References:

[1] Chang, KC, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80, 102-129, (1981) · Zbl 0487.49027 · doi:10.1016/0022-247X(81)90095-0
[2] Kourogenis, NC; Papageorgiou, NS, Nonsmooth critical point theory and nonlinear elliptic equation at resonance, Kodai Math. J., 23, 108-135, (2000) · Zbl 0999.58006 · doi:10.2996/kmj/1138044160
[3] Kyritsi, ST; Papageorgiou, NS, Pairs of positive solutions for nonlinear elliptic equations with the \(p\)-Laplacian and a nonsmooth potential, Annali di Matematica, 184, 449-472, (2005) · Zbl 1223.35148 · doi:10.1007/s10231-004-0119-3
[4] Kandilakis, D.; Kourogenis, NC; Papageorgiou, NS, Two nontrivial critical points for nonsmooth functionals via local linking and applications, J. Global Optim., 34, 219-244, (2006) · Zbl 1105.49019 · doi:10.1007/s10898-005-3884-7
[5] Papageorgiou, NS; Santos, SRA; Staicu, V., Eigenvalue problems for hemivariational inequalities, Set Valued Anal., 16, 1061-1087, (2008) · Zbl 1166.35356 · doi:10.1007/s11228-008-0100-1
[6] Qian, CY; Shen, ZF, Existence and multiplicity of solutions for \(p(x)\)-Laplacian equation with nonsmooth potential, Nonlinear Anal. RWA, 11, 106-116, (2010) · Zbl 1181.35119 · doi:10.1016/j.nonrwa.2008.10.019
[7] Qian, CY; Shen, ZF; Zhu, JQ, Multiplicity results for a differential inclusion problem with non-standard growth, J. Math. Anal. Appl., 386, 364-377, (2012) · Zbl 1234.35082 · doi:10.1016/j.jmaa.2011.08.015
[8] Ge, B.; Zhou, QM; Xue, XP, Infinitely many solutions for a differential inclusion problem in \({\mathbb{R}}^N\) involving \(p(x)\)-Laplacian and oscillatory terms, Z. Angew. Math. Phys., 63, 691-711, (2012) · Zbl 1254.35100 · doi:10.1007/s00033-012-0192-1
[9] Ge, B.; Liu, LL, Infinitely many solutions for differential inclusion problems in \({\mathbb{R}}^N\) involving the \(p(x)\)-Laplacian, Z. Angew. Math. Phys., 67, 8, (2016) · Zbl 1338.35134 · doi:10.1007/s00033-015-0612-0
[10] Ge, B., Existence theorem for Dirichlet problem for differential inclusion driven by the \(p(x)\)-Laplacian, Fixed Point Theory, 17, 267-274, (2016) · Zbl 1346.35248
[11] Dai, GW, Infinitely many solutions for a differential inclusion problem in \({\mathbb{R}}^N\) involving the \(p(x)\)-Laplacian, Nonlinear Anal. TMA, 71, 1116-1123, (2009) · Zbl 1171.35494 · doi:10.1016/j.na.2008.11.024
[12] Dai, GW; Liu, WL, Three solutions for a differential inclusion problem involving the \(p(x)\)-Laplacian, Nonlinear Anal. TMA, 71, 5318-5326, (2009) · Zbl 1175.35160 · doi:10.1016/j.na.2009.04.019
[13] Le, VK, On variational inequalities with maximal monotone operators and multivalued perturbing terms in Sobolev spaces with variable exponents, J. Math. Anal. Appl., 388, 695-715, (2012) · Zbl 1234.47046 · doi:10.1016/j.jmaa.2011.09.058
[14] Aouaoui, S., Multiplicity result for some nonlocal anisotropic equation via nonsmooth critical point theory approach, Appl. Math. Comput., 218, 532-541, (2011) · Zbl 1260.76033
[15] Cencelj, M.; Repovs̆, D.; Virk, Z̆, Multiple perturbations of a singular eigenvalue problem, Nonlinear Anal., 119, 37-45, (2015) · Zbl 1328.35007 · doi:10.1016/j.na.2014.07.015
[16] Fu, Y.; Shan, Y., On the removability of isolated singular points for elliptic equations involving variable exponent, Adv. Nonlinear Anal., 5, 121-132, (2016) · Zbl 1338.35014
[17] Papageorgiou, N.; Rădulescu, V.; Repovs̆, D., Sensitivity analysis for optimal control problems governed by nonlinear evolution inclusions, Adv. Nonlinear Anal., 6, 199-235, (2017) · Zbl 1365.49023
[18] Berestycki, B.; Brezis, H., On a free boundary problem arising in plasma physics, Nonlinear Anal. TMA, 4, 415-436, (1980) · Zbl 0437.35032 · doi:10.1016/0362-546X(80)90083-8
[19] Temam, R., A non-linear eigenvalue problem: The shape at equilibrium of a confined plasma, Archive for Rational Mechanics and Analysis, 60, 51-73, (1975) · Zbl 0328.35069 · doi:10.1007/BF00281469
[20] Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1993)
[21] Boureanu, MM; Rǎdulescu, V.; Repovš, D., On a \(p(\cdot )\)-biharmonic problem with no-flux boundary condition, Comput. Math. Appl., 72, 2505-2515, (2016) · Zbl 1458.35163 · doi:10.1016/j.camwa.2016.09.017
[22] Boureanu, MM; Udrea, DN, Existence and multiplicity results for elliptic problems with \(p(\cdot )\)-growth conditions, Nonlinear Anal. RWA, 14, 1829-1844, (2013) · Zbl 1271.35045 · doi:10.1016/j.nonrwa.2012.12.001
[23] Boureanu, MM; Udrea, C., No-flux boundary value problems with anisotropic variable exponents, Commun. Pure Appl. Anal., 14, 881-896, (2015) · Zbl 1316.35109 · doi:10.3934/cpaa.2015.14.881
[24] Ourraoui, A., On nonlocal \(p(x)\)-Laplacian problems involving no-flux boundary condition, Note Mat., 35, 69-80, (2015) · Zbl 1458.35173
[25] Afrouzi, GA; Mirzapour, M.; Rǎdulescu, VD, The variational analysis of a nonlinear anisotropic problem with no-flux boundary condition, Rev. Real Acad. Cien. Exac. Fac. Nat. Serie A. Matematicas, 109, 581-595, (2015) · Zbl 1323.35023 · doi:10.1007/s13398-014-0202-6
[26] Lapa, EC; Rivera, VP; Broncano, JQ, No-flux boundary problems involving \(p(x)\)-Laplacian-like operators, Electron. J. Differ. Equ., 219, 1-10, (2015) · Zbl 1330.35190
[27] Kristály, A., Infinitely many solutions for a differential inclusion problem in \({\mathbb{R}}^N\), J. Differ. Equ., 220, 511-530, (2006) · Zbl 1194.35523 · doi:10.1016/j.jde.2005.02.007
[28] Ge, B.; Xue, XP, Multiple solutions for inequality Dirichlet problems by the \(p(x)\)-Laplacian, Nonlinear Anal. RWA, 11, 3198-3210, (2010) · Zbl 1196.35236 · doi:10.1016/j.nonrwa.2009.11.014
[29] Diening, L., Riesz potential and sobolev embedding on generalized lebesque and sobolev space \(L^{p(\cdot )}\) and \(W^{k, p(\cdot )}\), Math. Nachr., 268, 31-43, (2004) · Zbl 1065.46024 · doi:10.1002/mana.200310157
[30] Edmunds, DE; Rákosnic, J., Sobolev embbeding with variable exponent, II, Math. Nachr., 246-247, 53-67, (2002) · Zbl 1030.46033 · doi:10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO;2-T
[31] Fan, XL; Zhang, QH, Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Anal. TMA, 52, 1843-1852, (2003) · Zbl 1146.35353 · doi:10.1016/S0362-546X(02)00150-5
[32] Fan, XL; Zhao, D., On the space \(L^{p(x)}(\Omega )\) and \(W^{k, p(x)}(\Omega )\), J. Math. Anal. Appl., 263, 424-446, (2001) · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617
[33] Kováčik, O.; Rákosník, J., On spaces \(L^{p(x)}(\Omega )\) and \(W^{k, p(x)}(\Omega )\), Czechoslov. Math. J., 41, 592-618, (1991) · Zbl 0784.46029
[34] Rădulescu, V., Repovs̆, D.: Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015) · Zbl 1343.35003 · doi:10.1201/b18601
[35] Zang, A.; Fu, Y., Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear Anal. TMA, 69, 3629-3636, (2008) · Zbl 1153.26312 · doi:10.1016/j.na.2007.10.001
[36] Amrouss, AR; Ourraoui, A., Existence of solutions for a boundary problem involving \(p(x)\)-biharmonic operator, Bol. Soc. Parana. Mat., 31, 179-192, (2013) · Zbl 1413.35193 · doi:10.5269/bspm.v31i1.15148
[37] Chang, K.C.: Critical Point Theory and Applications. Shanghai Scientific and Technology Press, Shanghai (1996)
[38] Ayoujil, A.; Amrouss, AR, On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal. TMA, 71, 4916-4926, (2009) · Zbl 1167.35380 · doi:10.1016/j.na.2009.03.074
[39] Ayoujil, A.; Amrouss, AR, Continuous spectrum of a fourth order nonhomogeneous elliptic equation with variable exponent, Electron. J. Differ. Equ., 24, 1-12, (2011) · Zbl 1227.35229
[40] Kourogenic, N.; Papageorgiou, NS, Nonsmooth critical point theory and nonlinear elliptic equations at resonance, J. Aust. Math. Soc., 69, 245-271, (2000) · Zbl 0964.35055 · doi:10.1017/S1446788700002202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.