×

On variational inequalities with maximal monotone operators and multivalued perturbing terms in Sobolev spaces with variable exponents. (English) Zbl 1234.47046

The purpose of this paper is to prove the existence of solutions of variational inequalities with maximal monotone operators and multivalued perturbing terms in Sobolev spaces with variable exponents, and to study both coercive and noncoercive inequalities. In the noncoercive case, a sub-supersolution approach is followed to obtain the existence and some other qualitative properties of solutions between sub- and supersolutions. The results presented in this paper improve and extend many known results in the recent literature.

MSC:

47J20 Variational and other types of inequalities involving nonlinear operators (general)
49J40 Variational inequalities
90C31 Sensitivity, stability, parametric optimization
47H05 Monotone operators and generalizations
47E05 General theory of ordinary differential operators
Full Text: DOI

References:

[1] Aubin, J.-P.; Frankowska, H., Set-Valued Analysis, Systems Control Found. Appl., vol. 2 (1990), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA · Zbl 0713.49021
[2] Browder, F. E.; Hess, P., Nonlinear mappings of monotone type in Banach spaces, J. Funct. Anal., 11, 251-294 (1972) · Zbl 0249.47044
[3] Carl, S.; Le, V. K.; Motreanu, D., Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications, Springer Monogr. Math. (2007), Springer: Springer New York · Zbl 1109.35004
[4] Chabrowski, Jan; Fu, Yongqiang, Existence of solutions for \(p(x)\)-Laplacian problems on a bounded domain, J. Math. Anal. Appl., 306, 604-618 (2005) · Zbl 1160.35399
[5] Chen, Y.; Levine, S.; Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66, 4, 1383-1406 (2006), (electronic) · Zbl 1102.49010
[6] Clarke, F. H., Optimization and Nonsmooth Analysis (1990), SIAM: SIAM Philadelphia · Zbl 0727.90045
[7] Deng, Shao-Gao, Eigenvalues of the \(p(x)\)-Laplacian Steklov problem, J. Math. Anal. Appl., 339, 925-937 (2008) · Zbl 1160.49307
[8] L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. thesis, University of Freiburg, Germany, 2002.; L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. thesis, University of Freiburg, Germany, 2002. · Zbl 1022.76001
[9] Fan, Xianling, On the sub-supersolution method for \(p(x)\)-Laplacian equations, J. Math. Anal. Appl., 330, 665-682 (2007) · Zbl 1206.35103
[10] Fan, Xianling; Deng, Shao-Gao, Remarks on Ricceriʼs variational principle and applications to the \(p(x)\)-Laplacian equations, Nonlinear Anal., 67, 3064-3075 (2007) · Zbl 1134.35035
[11] Fan, Xianling; Zhang, Qihu, Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Anal., 52, 1843-1852 (2003) · Zbl 1146.35353
[12] Fan, Xianling; Zhao, Dun, On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m, p(x)}(\Omega)\), J. Math. Anal. Appl., 263, 424-446 (2001) · Zbl 1028.46041
[13] Halsey, T. C., Electrorheological fluids, Science, 258, 761-766 (1992)
[14] Hu, S. C.; Papageorgiou, N. S., Handbook of Multivalued Analysis, vol. I, Theory, Math. Appl., vol. 419 (1997), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0887.47001
[15] Kourogenis, N. C.; Papageorgiou, N. S., Nonlinear hemivariational inequalities of second order using the method of upper-lower solutions, Proc. Amer. Math. Soc., 131, 2359-2369 (2003) · Zbl 1094.35058
[16] Kristály, A.; Rădulescu, V. D.; Varga, C. G., Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia Math. Appl., vol. 136 (2010), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1206.49002
[17] Le, V. K., Sub-supersolutions and the existence of extremal solutions in noncoercive variational inequalities, JIPAM. J. Inequal. Pure Appl. Math., 2, 2 (2001), Article 20, 16 pp · Zbl 1006.35043
[18] Le, V. K., Subsolution-supersolution method in variational inequalities, Nonlinear Anal., 45, 775-800 (2001) · Zbl 1040.49008
[19] Le, V. K., On a sub-supersolution method for the prescribed mean curvature problem, Czechoslovak Math. J., 58(133), 2, 541-560 (2008) · Zbl 1174.35052
[20] Le, V. K., On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal., 71, 3305-3321 (2009) · Zbl 1179.35148
[21] Le, V. K., A range and existence theorem for pseudomonotone perturbations of maximal monotone operators, Proc. Amer. Math. Soc., 139, 1645-1658 (2011) · Zbl 1216.47086
[22] Le, V. K., Sub-supersolution method in variational inequalities with multivalued operators given by integrals, Rocky Mountain J. Math., 41, 535-553 (2011) · Zbl 1216.35072
[23] Le, V. K., Variational inequalities with general multivalued lower order terms given by integrals, Adv. Nonlinear Stud., 11, 1-24 (2011) · Zbl 1229.49010
[24] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Dunod: Dunod Paris · Zbl 0189.40603
[25] Mihăilescu, M., Existence and multiplicity of solutions for an elliptic equation with \(p(x)\)-growth conditions, Glasg. Math. J., 48, 411-418 (2006) · Zbl 1387.35289
[26] Mihăilescu, M.; Pucci, P.; Rădulescu, V., Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340, 687-698 (2008) · Zbl 1135.35058
[27] Mihăilescu, M.; Rădulescu, V., Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting, J. Math. Anal. Appl., 330, 416-432 (2007) · Zbl 1176.35071
[28] Mihăilescu, M.; Rădulescu, V., A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462, 2625-2641 (2006) · Zbl 1149.76692
[29] Rodrigues, J. F., Obstacle Problems in Mathematical Physics (1987), North-Holland: North-Holland Amsterdam · Zbl 0606.73017
[30] Ružička, M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748 (2000), Springer-Verlag: Springer-Verlag Berlin · Zbl 0968.76531
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.