×

A mathematical framework for deep learning in elastic source imaging. (English) Zbl 1400.35234

Summary: An inverse elastic source problem with sparse measurements is our concern. A generic mathematical framework is proposed which extends a low-dimensional manifold regularization in the conventional source reconstruction algorithms thereby enhancing their performance with sparse data-sets. It is rigorously established that the proposed framework is equivalent to the so-called deep convolutional framelet expansion in machine learning literature for inverse problems. Apposite numerical examples are furnished to substantiate the efficacy of the proposed framework.

MSC:

35R30 Inverse problems for PDEs
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
35L53 Initial-boundary value problems for second-order hyperbolic systems
35Q74 PDEs in connection with mechanics of deformable solids
74G75 Inverse problems in equilibrium solid mechanics
92C55 Biomedical imaging and signal processing

References:

[1] J. Adler and O. Öktem, Learned primal-dual reconstruction, IEEE Trans. Med. Imaging, 37 (2018), pp. 1322–1332, .
[2] R. Albanese and P. B. Monk, The inverse source problem for Maxwell’s equations, Inverse Problems, 22 (2006), pp. 1023–1035, . · Zbl 1099.35161
[3] H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee, and A. Wahab, Mathematical Methods in Elasticity Imaging, Princeton University Press, Princeton, New Jersey, 2015. · Zbl 1332.35002
[4] H. Ammari, E. Bretin, J. Garnier, and A. Wahab, Time reversal in attenuating acoustic media, in Contemporary Mathematics 548, AMS, Providence, RI, 2011, pp. 151–163. · Zbl 1232.35189
[5] H. Ammari, E. Bretin, J. Garnier, and A. Wahab, Time-reversal algorithms in viscoelastic media, European J. Appl. Math., 24 (2013), pp. 565–600, . · Zbl 1326.74068
[6] H. Ammari, E. Bretin, V. Jugnon, and A. Wahab, Photoacoustic imaging for attenuating acoustic media, in Lecture Notes in Math. 2035, Springer Verlag, Berlin, 2012, pp. 57–84, . · Zbl 1345.92084
[7] H. Ammari, J. Garnier, W. Jing, H. Kang, M. Lim, K. Sø lna, and H. Wang, Mathematical and Statistical Methods for Multistatic Imaging, Lecture Notes in Math. 2098, Springer-Verlag, Cham, 2013. · Zbl 1288.35001
[8] B. E. Anderson, M. Griffa, T. J. Ulrich, and P. A. Johnson, Time reversal reconstruction of finite sized sources in elastic media, J. Acoust. Soc. Am., 130 (2011), pp. EL219–EL225, .
[9] S. Antholzer, M. Haltmeier, and J. Schwab, Deep learning for photoacoustic tomography from sparse data, Inverse Probl. Sci. Eng., accepted, , 2018; preprint, , 2017.
[10] A. Archer and K. G. Sabra, Two dimensional spatial coherence of the natural vibrations of the biceps brachii muscle generated during voluntary contractions, in IEEE Engineering in Medicine & Biology Society (EMBC’10), Buenos Aires, Argentina, 2010, IEEE, Piscataway, pp. 170–173, .
[11] W. Bae, J. Yoo, and J. C. Ye, Beyond deep residual learning for image restoration: Persistent homology-guided manifold simplification, in Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, 2017, pp. 1141–1149, .
[12] A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), pp. 2419–2434, . · Zbl 1371.94049
[13] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Ser. Comput. Phys., Springer-Verlag, New York, 1988, . · Zbl 0658.76001
[14] H. Chen, Y. Zhang, Y. Chen, J. Zhang, W. Zhang, H. Sun, Y. Lv, P. Liao, J. Zhou, and G. Wang, LEARN: Learned experts’ assessment-based reconstruction network for sparse-data CT, IEEE Trans. Med. Imaging, 37 (2018), pp. 1333–1347, .
[15] H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and G. Wang, Low-dose CT with a residual encoder-decoder convolutional neural network, IEEE Trans. Med. Imaging, 36 (2017), pp. 2524–2535, .
[16] H. Chen, Y. Zhang, W. Zhang, P. Liao, K. Li, J. Zhou, and G. Wang, Low-dose CT via convolutional neural network, Biomedical Optics Express, 8 (2017), pp. 679–694, .
[17] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306, . · Zbl 1288.94016
[18] F. C. et al., Keras, 2015.
[19] M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, Time-reversed acoustics, Rep. Prog. Phys., 63 (2000), pp. 1933–1994, .
[20] J.-L. Gennisson, S. Catheline, S. Chaffa, and M. Fink, Transient elastography in anisotropic medium: Application to the measurement of slow and fast shear wave speeds in muscles, J. Acoust. Soc. Am., 114 (2003), pp. 536–541, .
[21] M. Griffa, B. E. Anderson, R. A. Guyer, T. J. Ulrich, and P. A. Johnson, Investigation of the robustness of time reversal acoustics in solid media through the reconstruction of temporally symmetric sources, J. Phys. D, 41 (2008), 085415, .
[22] Y. Han and J. C. Ye, Framing U-Net via deep convolutional framelets: Application to sparse-view CT, IEEE Trans. Med. Imaging, 37 (2018), pp. 1418–1429, .
[23] Y. Han, J. Yoo, and J. C. Ye, Deep Residual Learning for Compressed Sensing CT Reconstruction via Persistent Homology Analysis, preprint, , 2016.
[24] F. D. Hastings, J. B. Schneider, and S. L. Broschat, Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation, J. Acoust. Soc. Am., 100 (1996), pp. 3061–3069, .
[25] K. H. Jin, D. Lee, and J. C. Ye, A general framework for compressed sensing and parallel MRI using annihilating filter based low-rank Hankel matrix, IEEE Trans. Comput. Imaging, 2 (2016), pp. 480–495, .
[26] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, Deep convolutional neural network for inverse problems in imaging, IEEE Trans. Image Process., 26 (2017), pp. 4509–4522, . · Zbl 1409.94275
[27] K. H. Jin and J. C. Ye, Annihilating filter-based low-rank Hankel matrix approach for image inpainting, IEEE Trans. Image Process., 24 (2015), pp. 3498–3511, . · Zbl 1408.94291
[28] E. Kang, W. Chang, J. Yoo, and J. C. Ye, Deep convolutional framelet denosing for low-dose CT via wavelet residual network, IEEE Trans. Med. Imaging, 37 (2018), pp. 1358–1369, .
[29] E. Kang, J. Min, and J. C. Ye, A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction, Med. Phys., 44 (2017), pp. e360–e375, .
[30] E. Kang and J. C. Ye, Wavelet Domain Residual Network (WavResNet) for Low-Dose X-Ray CT Reconstruction, 2017, .
[31] A. Karpathy and L. Fei-Fei, Deep visual-semantic alignments for generating image descriptions, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2017), pp. 664–676, .
[32] S. Kedar, Source distribution of ocean microseisms and implications for time-dependent noise tomography, C. R. Geosci., 343 (2011), pp. 548–557, .
[33] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, preprint, , 2017.
[34] S. Kremers, A. Fichtner, G. B. Brietzke, H. Igel, C. Larmat, L. Huang, and M. Käser, Exploring the potentials and limitations of the time-reversal imaging of finite seismic sources, Solid Earth, 2 (2011), pp. 95–105, .
[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, in Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, 2012, Curran Associates, Red Hook, NY, pp. 1097–1105.
[36] A. Lakhal and A. K. Louis, Locating radiating sources for Maxwell’s equations using the approximate inverse, Inverse Problems, 24 (2008), 045020, . · Zbl 1155.35492
[37] C. Larmat, J.-P. Montagner, M. Fink, Y. Capdeville, A. Tourin, and E. Clévédé, Time-reversal imaging of seismic sources and application to the great Sumatra earthquake, Geophys. Res. Lett., 33 (2006), L19312, .
[38] D. D. Lee and H. S. Seung, Unsupervised learning by convex and conic coding, in Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 1997, pp. 515–521, .
[39] D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 401 (1999), 788, . · Zbl 1369.68285
[40] D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, in Proceedings of the 13th International Conference on Neural Information Processing Systems, 2000, MIT Press, Cambridge, MA, pp. 535–541.
[41] J. Lim, A. Wahab, G. Park, K. Lee, Y. Park, and J. C. Ye, Beyond Born-Rytov limit for super-resolution optical diffraction tomography, Optics Express, 25 (2017), pp. 30445–30458, .
[42] Y. Liu, T. Zhao, W. Ju, and S. Shi, Materials discovery and design using machine learning, J. Materiomics, 3 (2017), pp. 159–177, .
[43] Y. Liu, T. Zhao, G. Yang, W. Ju, and S. Shi, The onset temperature (Tg) of AsxSe 1- x glasses transition prediction: A comparison of topological and regression analysis methods, Comput. Mater. Sci., 140 (2017), pp. 315–321, .
[44] C. H. McCollough, A. C. Bartley, R. E. Carter, B. Chen, T. A. Drees, P. Edwards, D. R. Holmes, A. E. Huang, F. Khan, S. Leng, et al., Low-dose CT for the detection and classification of metastatic liver lesions: Results of the 2016 low dose CT grand challenge, Med. Phys., 44 (2017), pp. e339–e352, .
[45] C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. G. de Peralta, EEG source imaging, Clinical Neurophysiology, 115 (2004), pp. 2195–2222, .
[46] V. Nair and G. E. Hinton, Rectified linear units improve restricted Boltzmann machines, in Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 807–814.
[47] R. P. Porter and A. J. Devaney, Holography and the inverse source problem, J. Opt. Soc. Am., 72 (1982), pp. 327–330, .
[48] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, in Medical Image Computing and Computer-Assisted Intervention MICCAI 2015, Lecture Notes in Comput. Sci. 9351, N. Navab, J. Hornegger, W. Wells, and A. Frangi, eds., Springer, Cham, 2015, pp. 234–241, .
[49] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ImageNet Large Scale Visual Recognition Challenge, Int. J. Comput. Vis., 115 (2015), pp. 211–252, .
[50] K. G. Sabra, S. Conti, P. Roux, and W. A. Kuperman, Passive in vivo elastography from skeletal muscle noise, Appl. Phys. Lett., 90 (2007), 194101, .
[51] O. Scherzer, ed., Handbook of Mathematical Methods in Imaging, 1st ed., Springer, New York, 2011. · Zbl 1259.00006
[52] S. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, W. Ju, C. Ouyang, and R. Xiao, Multi-scale computation methods: Their applications in lithium-ion battery research and development, Chin. Phys. B, 25 (2015), 018212, .
[53] M. Vetterli, P. Marziliano, and T. Blu, Sampling signals with finite rate of innovation, IEEE Trans. Signal Process., 50 (2002), pp. 1417–1428, . · Zbl 1369.94309
[54] A. Wahab and R. Nawaz, A note on elastic noise source localization, J. Vib. Control, 22 (2016), pp. 1889–1894, . · Zbl 1365.74099
[55] A. Wahab, A. Rasheed, T. Hayat, and R. Nawaz, Electromagnetic time reversal algorithms and source localization in lossy dielectric media, Commun. Theor. Phys., 62 (2014), pp. 779–789, . · Zbl 1308.35328
[56] G. Wang, A perspective on deep imaging, IEEE Access, 4 (2016), pp. 8914–8924, .
[57] S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang, Accelerating magnetic resonance imaging via deep learning, in Proceedings of the IEEE 13th International Symposium on Biomedical Imaging, IEEE, 2016, pp. 514–517, .
[58] X. Wang, M. Song, Y. Guo, H. Li, and H. Liu, Fourier Method for Identifying Electromagnetic Sources with Multi-frequency Far-Field Data, preprint, , 2018.
[59] A. Wiegmann, Fast Poisson, Fast Helmholtz and Fast Linear Elastostatic Solvers on Rectangular Parallelepipeds, Tech. report, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA, 1999.
[60] J. M. Wolterink, T. Leiner, M. A. Viergever, and I. Išgum, Generative adversarial networks for noise reduction in low-dose CT, IEEE Trans. Med. Imaging, 36 (2017), pp. 2536–2545, .
[61] T. Würfl, F. C. Ghesu, V. Christlein, and A. Maier, Deep learning computed tomography, in International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, 2016, pp. 432–440, .
[62] J. C. Ye, Y. Han, and E. Cha, Deep convolutional framelets: A general deep learning framework for inverse problems, SIAM J. Imaging Sci., 11 (2018), pp. 991–1048, . · Zbl 1401.94024
[63] J. C. Ye, J. M. Kim, K. H. Jin, and K. Lee, Compressive sampling using annihilating filter-based low-rank interpolation, IEEE Trans. Inform. Theory, 63 (2017), pp. 777–801, . · Zbl 1364.94267
[64] J. Yoo, Y. Jung, M. Lim, J. C. Ye, and A. Wahab, A joint sparse recovery framework for accurate reconstruction of inclusions in elastic media, SIAM J. Imaging Sci., 10 (2017), pp. 1104–1138, . · Zbl 1391.35428
[65] D. Zhang, Y. Guo, J. Li, and H. Liu, Locating Multiple Multipolar Acoustic Sources Using the Direct Sampling Method, preprint, , 2018.
[66] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans. Image Process., 26 (2017), pp. 3142–3155, . · Zbl 1409.94754
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.