A note on elastic noise source localization. (English) Zbl 1365.74099
Summary: The problem of reconstructing the spatial support of ambient noise sources from elastic wavefield boundary measurements using cross-correlation techniques is dealt with. It is demystified that the cross-correlation-based standard source localization functional in elastic media does not provide optimal refocusing due to different pressure and shear wave speeds. Then, a weighted functional is proposed to rectify the coupling artifacts. A numerical experiment is presented to substantiate the appositeness of the proposed functional.
References:
[1] | Aki K, Quantitative Seismology (1980) |
[2] | Ammari H, An Introduction to Mathematics of Emerging Biomedical Imaging (2008) |
[3] | Ammari H, SIAM Journal on Applied Mathematics 72 pp 317– (2012) · Zbl 1239.35181 · doi:10.1137/11083191X |
[4] | Ammari H, European Journal of Applied Mathematics 24 pp 565– (2013) · Zbl 1326.74068 · doi:10.1017/S0956792513000107 |
[5] | Ammari H, Mathematical Methods in Elasticity Imaging (2014) |
[6] | Asghar S, Applied Acoustics 54 pp 323– (1998) · doi:10.1016/S0003-682X(97)00087-X |
[7] | Borcea L, Multiscale Modeling & Simulation 8 pp 1981– (2010) · Zbl 1220.35190 · doi:10.1137/100782711 |
[8] | Borchers W, Hokkaido Mathematical Journal 19 pp 67– (1990) · Zbl 0719.35014 · doi:10.14492/hokmj/1381517172 |
[9] | Carmona M, Identification passive des milieux de propagation élastiques (2011) |
[10] | Chen Y, Journal of Vibration and Control 14 pp 1443– (2008) · Zbl 1229.78018 · doi:10.1177/1077546307087438 |
[11] | Galdi GP, An Introduction to the Mathematical Theory of the Navier–Stokes Equations I: Linearized Steady Problems (1994) · doi:10.1007/978-1-4612-5364-8 |
[12] | Garnier J, SIAM Journal on Imaging Sciences 2 pp 396– (2009) · Zbl 1179.35344 · doi:10.1137/080723454 |
[13] | Garnier J, Inverse Problems 28 pp 075002– (2012) · Zbl 1260.65090 · doi:10.1088/0266-5611/28/7/075002 |
[14] | Garnier J, SIAM Journal on Imaging Sciences 6 pp 1092– (2013) · Zbl 1282.35410 · doi:10.1137/120875533 |
[15] | Gennisson JL, Journal of the Acoustical Society of America 114 pp 536– (2003) · doi:10.1121/1.1579008 |
[16] | Hoop MV, SIAM Journal on Applied Mathematics 73 pp 493– (2013) · Zbl 1267.35267 · doi:10.1137/110836286 |
[17] | Kader S, Comptes Rendus Geoscience 343 pp 548– (2011) · doi:10.1016/j.crte.2011.04.005 |
[18] | Kuske R, Journal of Vibration and Control 16 pp 983– (2010) · Zbl 1269.70023 · doi:10.1177/1077546309341104 |
[19] | Nawaz R, Journal of the Acoustical Society of America 134 pp 1939– (2013) · doi:10.1121/1.4817891 |
[20] | Nawaz R, Journal of Modern Optics (2014) |
[21] | Nayfeh AH, Journal of Vibration and Control 1 pp 389– (1995) |
[22] | Sabra KG, Applied Physics Letters 90 pp 194101– (2007) · doi:10.1063/1.2737358 |
[23] | Schwarz G, Hodge Decomposition–A Method for Solving Boundary Value Problems (1995) · Zbl 0828.58002 · doi:10.1007/BFb0095978 |
[24] | Shen M, Journal of Vibration and Control 19 pp 415– (2013) · doi:10.1177/1077546311433352 |
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.