×

Subdivisions, Shellability, and collapsibility of products. (English) Zbl 1399.52025

Summary: We prove that the second derived subdivision of any rectilinear triangulation of any convex polytope is shellable. Also, we prove that the first derived subdivision of every rectilinear triangulation of any convex 3-dimensional polytope is shellable. This complements Mary Ellen Rudin’s classical example of a non-shellable rectilinear triangulation of the tetrahedron. Our main tool is a new relative notion of shellability that characterizes the behavior of shellable complexes under gluing.

MSC:

52B22 Shellability for polytopes and polyhedra
05E45 Combinatorial aspects of simplicial complexes
57Q10 Simple homotopy type, Whitehead torsion, Reidemeister-Franz torsion, etc.

References:

[1] K. A. Adiprasito: Methods from Differential Geometry in Polytope Theory, Berlin, DE, May 2013, published on diss.fu-berlin.de.
[2] K. A. Adiprasito and B. Benedetti: Metric geometry, convexity and collapsibility, preprint, available at arXiv:1107.5789.
[3] K. A. Adiprasito and B. Benedetti: Tight complexes in 3-space admit perfect discrete Morse functions, European J. Combinatorics 45 (2015), 71–84. · Zbl 1304.05161 · doi:10.1016/j.ejc.2014.10.002
[4] K. A. Adiprasito and I. Izmestiev: Derived subdivisions make every PL sphere polytopal, Isr. J. Math. (2014), to appear.
[5] K. A. Adiprasito and R. Sanyal: Relative Stanley-Reisner Theory and Upper Bound Theorems for Minkowski sums, preprint, arXiv:1405.7368. · Zbl 1368.52016
[6] J. W. Alexander, The combinatorial theory of complexes, Ann. of Math. 31 (2) (1930), 292–320. · JFM 56.0497.02 · doi:10.2307/1968099
[7] J. A. Barmak and E. G. Minian: Strong homotopy types, nerves and collapses, Discrete Comput. Geom. 47 (2012), 301–328. · Zbl 1242.57019 · doi:10.1007/s00454-011-9357-5
[8] B. Benedetti: Discrete Morse theory for manifolds with boundary, Trans. Amer. Math. Soc. 364 (2012), 6631–6670. · Zbl 1288.57022 · doi:10.1090/S0002-9947-2012-05614-5
[9] R. H. Bing: Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, Lectures on modern mathematics, Vol. II, Wiley, New York, 1964, 93–128.
[10] A. Björner: Topological methods, Handbook of Combinatorics, Vol. 1, 2, Elsevier, Amsterdam, 1995, 1819–1872. · Zbl 0851.52016
[11] A. Björner and M. L. Wachs: Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc. 348 (1996), 1299–1327. · Zbl 0857.05102 · doi:10.1090/S0002-9947-96-01534-6
[12] H. Bruggesser and P. Mani: Shellable decompositions of cells and spheres, Math. Scand. 29 (1971), 197–205 (1972). · Zbl 0251.52013 · doi:10.7146/math.scand.a-11045
[13] V. M. Buchstaber and T. E Panov: Torus actions and their applications in topology and combinatorics, vol. 24, American Mathematical Society, 2002. · Zbl 1012.52021
[14] D. R. J. Chillingworth: Collapsing three-dimensional convex polyhedra, Proc. Cambridge Philos. Soc. 63 (1967), 353–357, Correction in Math. Proc. Cambridge Philos. Soc. 88 (2) (1980), 307–310. · Zbl 0152.22601 · doi:10.1017/S0305004100041268
[15] M. M. Cohen: A course in Simple-Homotopy Theory, Springer-Verlag, New York, 1973, Graduate Texts in Mathematics, Vol. 10. · Zbl 0261.57009
[16] M. M. Cohen: Dimension estimates in collapsing X{\(\times\)}I q, Topology 14 (1975), 253–256. · Zbl 0318.57015 · doi:10.1016/0040-9383(75)90006-3
[17] M. Courdurier: On stars and links of shellable polytopal complexes, Journal of Combinatorial Theory, Series A 113 (2006), 692–697. · Zbl 1091.52008 · doi:10.1016/j.jcta.2005.05.001
[18] S. L. Čukić and E. Delucchi: Simplicial shellable spheres via combinatorial blowups, Proc. Amer. Math. Soc. 135 (2007), 2403–2414 (electronic). · Zbl 1117.06003 · doi:10.1090/S0002-9939-07-08768-0
[19] G. Danaraj and V. Klee: Shellings of spheres and polytopes, Duke Mathematical Journal 41 (1974), 443–451. · Zbl 0285.52003 · doi:10.1215/S0012-7094-74-04150-7
[20] M. W. Davis and G. Moussong: Notes on nonpositively curved polyhedra, in: Low-dimensional topology (Eger 1996/Budapest 1998), Bolyai Soc. Math. Stud., vol. 8, János Bolyai Math. Soc., Budapest, 1999, 11-94. · Zbl 0961.53022
[21] P. Dierker: Note on collapsing K {\(\times\)} I where K is a contractible polyhedron, Proc. Amer. Math. Soc. 19 (1968), 425–428. · Zbl 0159.25302
[22] R. Edwards and D. Gillman: Any spine of the cube is 2-collapsible, Canad. J. Math. 35 (1983), 43–48. · Zbl 0488.57007 · doi:10.4153/CJM-1983-003-x
[23] D. Gillman and D. Rolfsen: The Zeeman conjecture for standard spines is equivalent to the Poincaré conjecture, Topology 22 (1983), 315–323. · Zbl 0518.57007 · doi:10.1016/0040-9383(83)90017-4
[24] L. C. Glaser: Geometrical combinatorial topology, i., Van Nostrand Reinhold Mathematical Studies Vol. 27. New York, 1970. · Zbl 0212.55603
[25] R. E. Goodrick: Non-simplicially collapsible triangulations of I n, Proc. Cambridge Philos. Soc. 64 (1968), 31–36. · Zbl 0179.52602 · doi:10.1017/S0305004100042511
[26] B. Grünbaum: Convex polytopes, second ed., Graduate Texts in Mathematics, vol. 221, Springer-Verlag, New York, 2003.
[27] M. Hachimori and G. M. Ziegler: Decompositons of simplicial balls and spheres with knots consisting of few edges, Math. Z. 235 (2000), 159–171. · Zbl 0965.57022 · doi:10.1007/s002090000129
[28] G. Hetyei: Invariants des complexes cubiques, Ann. Sci. Math. Qué. 20 (1996), 35–52 (French). · Zbl 0865.57020
[29] J. F. P. Hudson: Piecewise Linear Topology, University of Chicago Lecture Notes, W. A. Benjamin, Inc., New York-Amsterdam, 1969.
[30] J. Kahn, M. Saks and D. Sturtevant: A topological approach to evasiveness, Combinatorica 4 (1984), 297–306. · Zbl 0577.05061 · doi:10.1007/BF02579140
[31] W. B. R. Lickorish: On collapsing X 2{\(\times\)}I, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, 157–160.
[32] W. B. R. Lickorish: Unshellable triangulations of spheres, European J. Combin. 12 (1991), 527–530. · Zbl 0746.57007 · doi:10.1016/S0195-6698(13)80103-5
[33] W. B. R. Lickorish: Simplicial moves on complexes and manifolds, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, 299–320 (electronic). · Zbl 0963.57013
[34] S. Matveev and D. Rolfsen: Zeeman’s collapsing conjecture, Two-dimensional Homotopy and Combinatorial Group Theory, London Math. Soc. Lecture Note Ser., vol. 197, Cambridge Univ. Press, Cambridge, 1993, 335–364. · Zbl 0811.57009
[35] M. H. A. Newman: On the foundations of combinatorial analysis situs, Proc. Royal Acad. Amsterdam, vol. 29, 1926, 610–641. · JFM 52.0569.02
[36] U. Pachner: Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten, Abh. Math. Sem. Univ. Hamburg 57 (1987), 69–86. · Zbl 0651.52007 · doi:10.1007/BF02941601
[37] J. S. Provan and L. J. Billera: Decompositions of simplicial complexes related to diameters of convex polyhedra, Math. Oper. Res. 5 (1980), 576–594. · Zbl 0457.52005 · doi:10.1287/moor.5.4.576
[38] C. P. Rourke and B. J. Sanderson: Introduction to Piecewise-Linear Topology, Springer, New York, 1972, Ergebnisse Series vol. 69. · Zbl 0254.57010
[39] M. E. Rudin: An unshellable triangulation of a tetrahedron, Bull. Amer. Math. Soc. 64 (1958), 90–91. · Zbl 0082.37602 · doi:10.1090/S0002-9904-1958-10168-8
[40] P. Schenzel: On the number of faces of simplicial complexes and the purity of Frobe-nius, Math. Z. 178 (1) (1981), 125–142. · Zbl 0472.13012 · doi:10.1007/BF01218376
[41] R. P. Stanley: Combinatorics and Commutative Algebra, Progress in Mathematics, vol. 41, Birkhäuser Boston Inc., Boston, MA, 1983. · Zbl 0537.13009
[42] G. C. Verchota and A. L. Vogel: The multidirectional Neumann problem in R4, Math. Ann. 335 (2006), 571–644. · Zbl 1102.31008 · doi:10.1007/s00208-006-0756-5
[43] I. A. Volodin, V. E. Kuznecov and A. T. Fomenko: The problem of the algorithmic discrimination of the standard three-dimensional sphere, Uspehi Mat. Nauk 29 (1974), 71–168, Appendix by S. P. Novikov.
[44] V. Welker: Constructions preserving evasiveness and collapsibility, Discrete Math. 207 (1999), 243–255. · Zbl 0938.06003 · doi:10.1016/S0012-365X(99)00049-7
[45] J. H. C. Whitehead: Simplicial Spaces, Nuclei and m-Groups, Proc. London Math. Soc. S2-45 (1939), 243. · Zbl 0022.40702 · doi:10.1112/plms/s2-45.1.243
[46] E. C. Zeeman Seminar on Combinatorial Topology, Institut des Hautes Etudes Scientifiques, Paris, 1966 (English).
[47] G. M. Ziegler: Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.