×

A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. (English) Zbl 1398.74474

Summary: In this paper a model reduction approach for elastic-viscoplastic evolution problems is considered. Enhancement of the PGD reduced model by a new iterative technique involving only elastic problems is investigated and allows to reduce CPU cost. The accuracy of the solution and convergence properties are tested on an academic example and a calculation time comparison with the commercial finite element code Abaqus is presented in the case of an industrial structure.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
76M25 Other numerical methods (fluid mechanics) (MSC2010)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N99 Numerical methods for partial differential equations, boundary value problems
65N15 Error bounds for boundary value problems involving PDEs

Software:

ABAQUS
Full Text: DOI

References:

[1] Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids: Part II: Transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144: 98–121 · Zbl 1196.76047 · doi:10.1016/j.jnnfm.2007.03.009
[2] Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C R Math 339(9): 667–672 · Zbl 1061.65118 · doi:10.1016/j.crma.2004.08.006
[3] Bergmann M, Cordier L (2008) Optimal control of the cylinder wake in the laminar regime by trust-region methods and pod reduced-order models. J Comput Phys 227(16): 7813–7840 · Zbl 1388.76073 · doi:10.1016/j.jcp.2008.04.034
[4] Carlberg K, Bou-Mosleh C, Farhat C (2011) Efficient non-linear model reduction via a least-squares petrov–galerkin projection and compressive tensor approximations. Int J Numer Methods Eng 86(2): 155–181 · Zbl 1235.74351 · doi:10.1002/nme.3050
[5] Chaturantabut S, Sorensen DC (2010) Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput 32(5): 2737–2764 · Zbl 1217.65169 · doi:10.1137/090766498
[6] Chinesta F, Ammar A, Cueto E (2010) Proper generalized decomposition of multiscale models. Int J Numer Methods Eng 83(8–9): 1114–1132 · Zbl 1197.76093 · doi:10.1002/nme.2794
[7] Chinesta F, Ladevèze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4): 395–404 · doi:10.1007/s11831-011-9064-7
[8] Cognard JY, Ladevèze P (1993) A large time increment approach for cyclic viscoplasticity. Int J Plast 9(2): 141–157 · Zbl 0772.73028 · doi:10.1016/0749-6419(93)90026-M
[9] Cognard JY, Ladevèze P, Talbot P (1999) A large time increment approach for thermo-mechanical problems. Adv Eng Softw 30(9–11): 583–593 · doi:10.1016/S0965-9978(98)00120-3
[10] González D, Ammar A, Chinesta F, Cueto E (2010) Recent advances on the use of separated representations. Int J Numer Methods Eng 81(5): 637–659 · Zbl 1183.65168
[11] Gunzburger MD, Peterson JS, Shadid JN (2007) Reduced-order modeling of time-dependent pdes with multiple parameters in the boundary data. Comput Methods Appl Mech Eng 196(4-6): 1030–1047 · Zbl 1121.65354 · doi:10.1016/j.cma.2006.08.004
[12] Heyberger C, Boucard PA, Néron D (2012) Multiparametric analysis within the proper generalized decomposition framework. Comput Mech 49: 277–289 · Zbl 1246.80011 · doi:10.1007/s00466-011-0646-x
[13] Kunisch K, Xie L (2005) Pod-based feedback control of the burgers equation by solving the evolutionary hjb equation. Comput Math Appl 49(7–8): 1113–1126 · Zbl 1080.93012 · doi:10.1016/j.camwa.2004.07.022
[14] Ladevèze P (1985) New algorithms: mechanical framework and development (in french). Compte rendu de l’académie des Sci 300(2): 41–44 · Zbl 0597.73089
[15] Ladevèze P (1999) Nonlinear computationnal structural mechanics–new approaches and non-incremental methods of calculation. Springer, Berlin · Zbl 0912.73003
[16] Ladevèze P, Passieux JC, Néron D (2010) The LATIN multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199: 1287–1296 · Zbl 1227.74111 · doi:10.1016/j.cma.2009.06.023
[17] Leygue A, Verron E (2010) A first step towards the use of proper general decomposition method for structural optimization. Arch Comput Methods Eng 17(4): 465–472 · Zbl 1269.74182 · doi:10.1007/s11831-010-9052-3
[18] Lieu T, Farhat C, Lesoinne M (2006) Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput Methods Appl Mech Eng 195(41–43): 5730–5742 · Zbl 1124.76042 · doi:10.1016/j.cma.2005.08.026
[19] Miyamura T, Noguchi H, Shioya R, Yoshimura S, Yagawa G (2002) Elastic–plastic analysis of nuclear structures with millions of dofs using the hierarchical domain decomposition method. Nucl Eng Des 212(1–3): 335–355 · doi:10.1016/S0029-5493(01)00497-6
[20] Néron D, Ladevèze P (2010) Proper generalized decomposition for multiscale and multiphysics problems. Arch Comput Methods Eng 17: 351–372 · Zbl 1269.74209 · doi:10.1007/s11831-010-9053-2
[21] Nguyen NC, Peraire J (2008) An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. Int J Numer Methods Eng 76(1): 27–55 · Zbl 1162.65407 · doi:10.1002/nme.2309
[22] Nouy A (2010) A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23-24): 1603–1626 · Zbl 1231.76219 · doi:10.1016/j.cma.2010.01.009
[23] Nouy A, Ladevèze P (2004) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192: 3061–3087 · Zbl 1054.74701
[24] Nouy A, Maître OPL (2009) Generalized spectral decomposition for stochastic nonlinear problems. J Comput Phys 228(1): 202–235 · Zbl 1157.65009 · doi:10.1016/j.jcp.2008.09.010
[25] Relun N, Néron D, Boucard PA (2012) Multiscale elastic-viscoplastic computational analysis: a detailed example. Eur J Comput Mech 20(7–8): 379–409 · Zbl 1329.74310
[26] Sarbandi B, Cartel S, Besson J, Ryckelynck D (2010) Truncated integration for simultaneous simulation of sintering using a separated representation. Arch Comput Methods Eng, pp 1–9 · Zbl 1269.74211
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.