×

Estimating the scaling function of multifractal measures and multifractal random walks using ratios. (English) Zbl 1398.60059

Summary: In this paper, we prove central limit theorems for bias reduced estimators of the structure function of several multifractal processes, namely mutiplicative cascades, multifractal random measures, multifractal random walk and multifractal fractional random walk as defined by the first author [Ann. Appl. Probab. 18, No. 3, 1138–1163 (2008; Zbl 1154.60029)]. Previous estimators of the structure functions considered in the literature were severely biased with a logarithmic rate of convergence, whereas the estimators considered here have a polynomial rate of convergence.

MSC:

60G22 Fractional processes, including fractional Brownian motion
60F05 Central limit and other weak theorems
60G57 Random measures
62G05 Nonparametric estimation

Citations:

Zbl 1154.60029

References:

[1] Abry, P., Chainais, P., Coutin, L. and Pipiras, V. (2009). Multifractal random walks as fractional Wiener integrals. IEEE Trans. Inform. Theory 55 3825-3846. · Zbl 1367.60035
[2] Arcones, M.A. (1994). Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22 2242-2274. · Zbl 0839.60024 · doi:10.1214/aop/1176988503
[3] Bacry, E., Delour, J. and Muzy, J.F. (2001). Multifractal random walk. Phys. Rev. E 64 026103. · Zbl 0974.91045
[4] Bacry, E., Gloter, A., Hoffmann, M. and Muzy, J.F. (2010). Multifractal analysis in a mixed asymptotic framework. Ann. Appl. Probab. 20 1729-1760. · Zbl 1252.60036
[5] Bacry, E. and Muzy, J.F. (2003). Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 449-475. · Zbl 1032.60046 · doi:10.1007/s00220-003-0827-3
[6] Barral, J. and Mandelbrot, B.B. (2002). Multifractal products of cylindrical pulses. Probab. Theory Related Fields 124 409-430. · Zbl 1014.60042 · doi:10.1007/s004400200220
[7] Duvernet, L. (2010). Convergence of the structure function of a multifractal random walk in a mixed asymptotic setting. Stoch. Anal. Appl. 28 763-792. · Zbl 1205.60044 · doi:10.1080/07362994.2010.503458
[8] Duvernet, L., Robert, C.Y. and Rosenbaum, M. (2010). Testing the type of a semi-martingale: Itô against multifractal. Electron. J. Stat. 4 1300-1323. · Zbl 1329.62211
[9] Kahane, J.P. and Peyrière, J. (1976). Sur certaines martingales de Benoit Mandelbrot. Advances in Math. 22 131-145. · Zbl 0349.60051 · doi:10.1016/0001-8708(76)90151-1
[10] Ludeña, C. (2008). \(L^{p}\)-variations for multifractal fractional random walks. Ann. Appl. Probab. 18 1138-1163. · Zbl 1154.60029 · doi:10.1214/07-AAP483
[11] Mandelbrot, B. (1974). Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris Sér. A 278 289-292. · Zbl 0276.60096
[12] Muzy, J.F. and Bacry, E. (2002). Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws. Phys. Rev. E 66 056121.
[13] Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177-193. · Zbl 1097.60007 · doi:10.1214/009117904000000621
[14] Ossiander, M. and Waymire, E.C. (2000). Statistical estimation for multiplicative cascades. Ann. Statist. 28 1533-1560. · Zbl 1105.60305 · doi:10.1214/aos/1015957469
[15] Surgailis, D. (2003). CLTs for polynomials of linear sequences: Diagram formula with illustrations. In Theory and Applications of Long-Range Dependence 111-127. Boston, MA: Birkhäuser. · Zbl 1032.60017
[16] von Bahr, B. and Esseen, C.G. (1965). Inequalities for the \(r\)th absolute moment of a sum of random variables, \(1\leq r\leq 2\). Ann. Math. Statist. 36 299-303. · Zbl 0134.36902 · doi:10.1214/aoms/1177700291
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.