×

Multifractal analysis in a mixed asymptotic framework. (English) Zbl 1252.60036

This article deals with multifractal processes. In the literature, this kind of process has been used in many applications, for example, in order to model the velocity or the dissipation in a fully developed turbulence. A multifractal distribution of points generated by a random process is called multiplicative random cascade. A lot of studies have been dedicated to this field, especially in studying the partition function of a cascade, which entirely represents its multifractal properties. The definitions and the properties of cascades are stated at the beginning of the paper.
The main results in the literature usually concern the study of one single cascade. The authors in this work adopt an approach in which the number of cascade realizations becomes infinity showing interesting properties of the partition function. The convergence properties and the estimator of the cumulant generating function are studied. In the last section of the work, the authors present some specific example in order to illustrate the results.

MSC:

60G18 Self-similar stochastic processes
60G57 Random measures
60F99 Limit theorems in probability theory

References:

[1] Arbeiter, M. and Patzschke, N. (1996). Random self-similar multifractals. Math. Nachr. 181 5-42. · Zbl 0873.28003 · doi:10.1002/mana.3211810102
[2] Bacry, E. and Muzy, J. F. (2003). Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 449-475. · Zbl 1032.60046 · doi:10.1007/s00220-003-0827-3
[3] Barral, J. (2000). Continuity of the multifractal spectrum of a random statistically self-similar measure. J. Theoret. Probab. 13 1027-1060. · Zbl 0977.37024 · doi:10.1023/A:1007866024819
[4] Barral, J. and Mandelbrot, B. B. (2002). Multifractal products of cylindrical pulses. Probab. Theory Related Fields 124 409-430. · Zbl 1014.60042 · doi:10.1007/s004400200220
[5] Bouchaud, J. P. and Potters, M. (2003). Theory of Financial Risk and Derivative Pricing . Cambridge Univ. Press, Cambridge. · Zbl 1194.91008
[6] Brown, G., Michon, G. and Peyrière, J. (1992). On the multifractal analysis of measures. J. Stat. Phys. 66 775-790. · Zbl 0892.28006 · doi:10.1007/BF01055700
[7] Calvet, L., Fisher, A. and Mandelbrot, B. B. (1997). Large deviation theory and the distribution of price changes. Cowles Foundation Paper 1165.
[8] Chainais, P., Riedi, R. and Abry, P. (2005). On non-scale-invariant infinitely divisible cascades. IEEE Trans. Inform. Theory 51 1063-1083. · Zbl 1295.60021 · doi:10.1109/TIT.2004.842570
[9] Collet, P. and Koukiou, F. (1992). Large deviations for multiplicative chaos. Comm. Math. Phys. 147 329-342. · Zbl 0755.60022 · doi:10.1007/BF02096590
[10] Durrett, R. and Liggett, T. M. (1983). Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebiete 64 275-301. · Zbl 0506.60097 · doi:10.1007/BF00532962
[11] Ellis, R. S. (1984). Large deviations for a general class of random vectors. Ann. Probab. 12 1-12. · Zbl 0534.60026 · doi:10.1214/aop/1176993370
[12] Falconer, K. J. (1994). The multifractal spectrum of statistically self-similar measures. J. Theoret. Probab. 7 681-702. · Zbl 0805.60034 · doi:10.1007/BF02213576
[13] Fan, A. H. (2002). On Markov-Mandelbrot martingales. J. Math. Pures Appl. (9) 81 967-982. · Zbl 1022.60044 · doi:10.1016/S0021-7824(02)01267-9
[14] Frisch, U. (1995). Turbulence . Cambridge Univ. Press, Cambridge. · Zbl 0832.76001
[15] Frisch, U. and Parisi, G. (1985). Fully developped turbulence and intermittency. In Proc. of Int. Summer school Phys. Enrico Fermi.
[16] Guivarc’h, Y. (1990). Sur une extension de la notion de loi semi-stable. Ann. Inst. H. Poincaré Probab. Statist. 26 261-285. · Zbl 0703.60012
[17] Holley, R. and Waymire, E. C. (1992). Multifractal dimensions and scaling exponents for strongly bounded random cascades. Ann. Appl. Probab. 2 819-845. · Zbl 0786.60064 · doi:10.1214/aoap/1177005577
[18] Jaffard, S. (2000). On the Frisch-Parisi conjecture. J. Math. Pures Appl. (9) 79 525-552. · Zbl 0963.28009 · doi:10.1016/S0021-7824(00)00161-6
[19] Jaffard, S. (2004). Beyond Besov spaces. I. Distributions of wavelet coefficients. J. Fourier Anal. Appl. 10 221-246. · Zbl 1075.42014 · doi:10.1007/s00041-004-0946-z
[20] Kahane, J. P. and Peyrière, J. (1976). Sur certaines martingales de Benoit Mandelbrot. Advances in Math. 22 131-145. · Zbl 0349.60051 · doi:10.1016/0001-8708(76)90151-1
[21] Kozhemyak, A. (2006). Modélisation de séries financières à l’aide de processus invariants d’échelle. Application à la prédiction du risque. Ph.D. thesis, CMAP Ecole Polytechnique, France.
[22] Liu, Q. (2002). An extension of a functional equation of Poincaré and Mandelbrot. Asian J. Math. 6 145-168. · Zbl 1015.60006
[23] Mandelbrot, B. B. (1974). Intermittent turbulence in self-similar cascades: Divirgence of high moments and dimension of the carrier. J. Fluid Mech. 62 331-358. · Zbl 0289.76031 · doi:10.1017/S0022112074000711
[24] Mandelbrot, B. (1974). Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris Sér. A 278 289-292. · Zbl 0276.60096
[25] Mandelbrot, B. B. (1989). A class of multinomial multifractal measures with negative (latent) values for the “dimension” f ( \alpha ). In Fractals’ Physical Origin and Properties ( Erice , 1988). Ettore Majorana Internat. Sci. Ser. Phys. Sci. 45 3-29. Plenum, New York.
[26] Mandelbrot, B. B. (1990). Negative fractal dimensions and multifractals. Phys. A 163 306-315. · Zbl 0713.58034 · doi:10.1016/0378-4371(90)90339-T
[27] Mandelbrot, B. B. (2003). Multifractal power law distributions: Negative and critical dimensions and other “anomalies,” explained by a simple example. J. Stat. Phys. 110 739-774. · Zbl 1026.28007 · doi:10.1023/A:1022159802564
[28] Molchan, G. M. (1996). Scaling exponents and multifractal dimensions for independent random cascades. Comm. Math. Phys. 179 681-702. · Zbl 0853.76032 · doi:10.1007/BF02100103
[29] Muzy, J. F., Bacry, E., Baile, R. and Poggi, P. (2008). Uncovering latent singularities from multifractal scaling laws in mixed asymptotic regime. Application to turbulence. Europhys. Lett. 82 60007-60011.
[30] Muzy, J. F., Bacry, E. and Kozhemyak, A. (2006). Extreme values and fat tails of multifractal fluctuations. Phys. Rev. E (3) 73 066114. · Zbl 1244.82026 · doi:10.1103/PhysRevE.73.066114
[31] Muzy, J. F., Delour, J. and Bacry, E. (2000). Modelling fluctuations of financial time series: From cascade process to stochastic volatility model. Eur. J. Phys. B 17 537-548.
[32] Ossiander, M. and Waymire, E. C. (2000). Statistical estimation for multiplicative cascades. Ann. Statist. 28 1533-1560. · Zbl 1105.60305 · doi:10.1214/aos/1015957469
[33] Resnick, S., Samorodnitsky, G., Gilbert, A. and Willinger, W. (2003). Wavelet analysis of conservative cascades. Bernoulli 9 97-135. · Zbl 1020.62075 · doi:10.3150/bj/1068129012
[34] Riedi, R. H. (2002). Multifractal processes. In Long Range Dependence : Theory and Applications (P. Doukhan, G. Oppenheim and M. S. Taqqu, eds.) 625-716. Birkhäuser, Boston, MA. · Zbl 1060.28008
[35] von Bahr, B. and Esseen, C.-G. (1965). Inequalities for the r th absolute moment of a sum of random variables, 1\leq r \leq 2. Ann. Math. Statist. 36 299-303. · Zbl 0134.36902 · doi:10.1214/aoms/1177700291
[36] Waymire, E. C. and Williams, S. C. (1995). Multiplicative cascades: Dimension spectra and dependence. In Proceedings of the Conference in Honor of Jean-Pierre Kahane ( Orsay , 1993) 589-609. CRC Press, Boca Raton, FL. · Zbl 0889.60050
[37] Waymire, E. C. and Williams, S. C. (1996). A cascade decomposition theory with applications to Markov and exchangeable cascades. Trans. Amer. Math. Soc. 348 585-632. JSTOR: · Zbl 0857.60028 · doi:10.1090/S0002-9947-96-01500-0
[38] Wendt, H., Roux, S., Jaffard, S. and Abry, P. (2009). Wavelet leaders and bootstrap for multifractal analysis of images. Signal Process. 89 1100-1114. · Zbl 1161.94315 · doi:10.1016/j.sigpro.2008.12.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.