×

Non-local functionals related to the total variation and connections with image processing. (English) Zbl 1398.49042

Motivated by applications in image processing, the authors present in this massive work new results concerning the approximation of the total variation of a given function via some nonlocal and nonconvex functionals of a specific form. The pointwise convergence brings some results, however too many pathologies can be observed, therefore, as the authors put it, “a reasonable theory of pointwise convergence […] seems out of reach”. Fortunately, employing De Giorgi’s \(\Gamma\)-convergence radically improves the situation, also leaving space for some open problems. Worth noticing are the numerous and sometimes delicate steps needed in the (quite technical) proofs of the main results. A section of the paper is dedicated to investigating some functionals related both to the theoretical statements presented before and to image processing. Three appendices dealing with proofs of some of the mentioned pathologies and to a special case of the pointwise convergence, respectively, close this 77-page long (but fascinating) paper.

MSC:

49Q20 Variational problems in a geometric measure-theoretic setting
26B30 Absolutely continuous real functions of several variables, functions of bounded variation
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
28A75 Length, area, volume, other geometric measure theory
49M25 Discrete approximations in optimal control

References:

[1] Allaire, G.: Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation. Oxford University Press, Oxford (2007) · Zbl 1120.65001
[2] Ambrosio, L; Bourgain, J; Brezis, H; Figalli, A, Perimeter of sets and BMO-type norms, C. R. Acad. Sc. Paris, 352, 697-698, (2014) · Zbl 1316.46026 · doi:10.1016/j.crma.2014.07.001
[3] Ambrosio, L; Bourgain, J; Brezis, H; Figalli, A, BMO-type norms related to the perimeter of sets, Commun. Pure Appl. Math., 69, 1062-1086, (2016) · Zbl 1352.46026 · doi:10.1002/cpa.21620
[4] Ambrosio, L; Philippis, G; Martinazzi, L, Gamma-convergence of nonlocal perimeter functionals, Manuscr. Math., 134, 377-403, (2011) · Zbl 1207.49051 · doi:10.1007/s00229-010-0399-4
[5] Antonucci, C., Gobbino, M., Migliorini, M., Picenni, N.: Optimal constants for a non-local approximation of Sobolev norms and total variation. Preprint (2017). arXiv:1708.01231 · Zbl 1400.28007
[6] Aubert, G; Kornprobst, P, Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems?, SIAM J. Numer. Anal., 47, 844-860, (2009) · Zbl 1189.35067 · doi:10.1137/070696751
[7] Bourgain, J; Brezis, H; Mironescu, P; Menaldi, JL (ed.); Rofman, E (ed.); Sulem, A (ed.), Another look at Sobolev spaces, 439-455, (2001), Amsterdam · Zbl 1103.46310
[8] Bourgain, J; Brezis, H; Mironescu, P, Limiting embedding theorems for \(W^{s, p}\) when \(s ↑ 1\) and applications, J. Anal. Math., 87, 77-101, (2002) · Zbl 1029.46030 · doi:10.1007/BF02868470
[9] Bourgain, J; Brezis, H; Mironescu, P, A new function space and applications, J. Eur. Math. Soc., 17, 2083-2101, (2015) · Zbl 1339.46028 · doi:10.4171/JEMS/551
[10] Bourgain, J; Nguyen, H-M, A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris, 343, 75-80, (2006) · Zbl 1109.46034 · doi:10.1016/j.crma.2006.05.021
[11] Braides, A.: \(Γ \)-Convergence for Beginners, Oxford Lecture Series in Mathematics and Its Applications, vol. 22. Oxford University Press, Oxford (2002) · Zbl 1198.49001
[12] Brezis, H.: How to recognize constant functions. Connections with Sobolev spaces, Volume in honor of M. Vishik, Uspekhi Mat. Nauk 57 (2002), 59-74; English translation in Russian Math. Surveys 57 (2002), 693-708 · Zbl 1072.46020
[13] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, Berlin (2010) · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7
[14] Brezis, H, New approximations of the total variation and filters in imaging, Atti. Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26, 223-240, (2015) · Zbl 1325.26036 · doi:10.4171/RLM/704
[15] Brezis, H., Mironescu, P.: Sobolev Maps with Values into the Circle. Birkhäuser (in preparation) · Zbl 0970.35069
[16] Brezis, H; Nguyen, H-M, On a new class of functions related to VMO, C. R. Acad. Sci. Paris, 349, 157-160, (2011) · Zbl 1223.46027 · doi:10.1016/j.crma.2010.11.026
[17] Brezis, H; Nguyen, H-M, Two subtle convex nonlocal approximation of the \(BV\)-norm, Nonlinear Anal., 137, 222-245, (2016) · Zbl 1344.49017 · doi:10.1016/j.na.2016.02.005
[18] Brezis, H; Nguyen, H-M, The BBM formula revisited, Atti. Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27, 515-533, (2016) · Zbl 1362.46036 · doi:10.4171/RLM/746
[19] Brezis, H; Nguyen, H-M, Non-convex, non-local functionals converging to the total variation, C. R. Acad. Sci. Paris, 355, 24-27, (2017) · Zbl 1356.49013 · doi:10.1016/j.crma.2016.11.002
[20] Brezis, H., Nguyen, H.-M.: Paper in preparation
[21] Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490-530 (2005); Updated version in SIAM Review 52 (2010), 113-147 · Zbl 1108.94004
[22] Buades, A; Coll, B; Morel, JM, Neighborhood filters and PDE’s, Numer. Math., 105, 1-34, (2006) · Zbl 1151.94310 · doi:10.1007/s00211-006-0029-y
[23] Buades, A; Coll, B; Morel, JM, Non-local means denoising. image process, Online, 1, 208-212, (2011)
[24] Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, Berlin (2016) · Zbl 1377.35002
[25] Caffarelli, L; Roquejoffre, JM; Savin, O, Nonlocal minimal surfaces, Commun. Pure Appl. Math., 63, 1111-1144, (2010) · Zbl 1248.53009
[26] Caffarelli, L; Valdinoci, E, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. PDE, 41, 203-240, (2011) · Zbl 1357.49143 · doi:10.1007/s00526-010-0359-6
[27] Cai, J-F; Dong, B; Osher, S; Shen, Z, Image restoration, total variation, wavelet frames, and beyond, J. Am. Math. Soc., 25, 1033-1089, (2012) · Zbl 1277.35019 · doi:10.1090/S0894-0347-2012-00740-1
[28] Chambolle, A; Lions, P-L, Image recovery via total variation minimization and related problems, Numer. Math., 76, 167-188, (1997) · Zbl 0874.68299 · doi:10.1007/s002110050258
[29] Chan, T; Esedoglu, S; Park, F; Yip, A; Paragios, N (ed.); Chen, Y (ed.); Faugeras, O (ed.), Recent developments in total variation image restoration, 17-30, (2005), Berlin
[30] Dal Maso, G.: An Introduction to \(Γ \)-Convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser Boston Inc., Boston (1993) · Zbl 0816.49001
[31] Davila, J, On an open question about functions of bounded variation, Calc. Var. Partial Differ. Equ., 15, 519-527, (2002) · Zbl 1047.46025 · doi:10.1007/s005260100135
[32] Figalli, A; Fusco, N; Maggi, F; Millot, V; Morini, M, Isoperimetry and stability properties of balls with respect to nonlocal energies, Commun. Math. Phys., 336, 441-507, (2015) · Zbl 1312.49051 · doi:10.1007/s00220-014-2244-1
[33] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992) · Zbl 0804.28001
[34] Fusco, N, The quantitative isoperimetric inequality and related topics, Bull. Math. Sci., 5, 517-607, (2015) · Zbl 1327.49076 · doi:10.1007/s13373-015-0074-x
[35] Gilboa, G; Osher, S, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6, 595-630, (2007) · Zbl 1140.68517 · doi:10.1137/060669358
[36] Gilboa, G; Osher, S, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 1005-1028, (2008) · Zbl 1181.35006 · doi:10.1137/070698592
[37] Haddad, A; Meyer, Y, An improvement of rudin-osher-fatemi model, Appl. Comput. Harmon. Anal., 22, 319-334, (2007) · Zbl 1113.49037 · doi:10.1016/j.acha.2006.09.001
[38] Kindermann, S; Osher, S; Jones, PW, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4, 1091-1115, (2005) · Zbl 1161.68827 · doi:10.1137/050622249
[39] Lee, JS, Digital image smoothing and the sigma filter, Comput. Vis. Graph. Image Process., 24, 255-269, (1983) · doi:10.1016/0734-189X(83)90047-6
[40] Leoni, G; Spector, D, Characterization of Sobolev and BV spaces, J. Funct. Anal., 261, 2926-2958, (2011) · Zbl 1236.46032 · doi:10.1016/j.jfa.2011.07.018
[41] Leoni, G; Spector, D, Corrigendum to “characterization of Sobolev and BV spaces”, J. Funct. Anal., 266, 1106-1114, (2014) · Zbl 1308.46045 · doi:10.1016/j.jfa.2013.10.026
[42] Nguyen, H-M, Some new characterizations of Sobolev spaces, J. Funct. Anal., 237, 689-720, (2006) · Zbl 1109.46040 · doi:10.1016/j.jfa.2006.04.001
[43] Nguyen, H-M, \(Γ \)-convergence and Sobolev norms, C. R. Acad. Sci. Paris, 345, 679-684, (2007) · Zbl 1132.46026 · doi:10.1016/j.crma.2007.11.005
[44] Nguyen, H-M, Further characterizations of Sobolev spaces, J. Eur. Math. Soc., 10, 191-229, (2008) · Zbl 1228.46033
[45] Nguyen, H-M, \(Γ \)-convergence, Sobolev norms, and BV functions, Duke Math. J., 157, 495-533, (2011) · Zbl 1221.28011 · doi:10.1215/00127094-1272921
[46] Nguyen, H-M, Some inequalities related to Sobolev norms, Calc. Var. Partial Differ. Equ., 41, 483-509, (2011) · Zbl 1226.46030 · doi:10.1007/s00526-010-0373-8
[47] Nguyen, H-M, Estimates for the topological degree and related topics, J. Fixed Point Theory, 15, 185-215, (2014) · Zbl 1321.46037 · doi:10.1007/s11784-014-0182-3
[48] Paris, S; Kornprobst, P; Tumblin, J; Durand, F, Bilateral filtering: theory and applications, Found. Trends Comput. Graph. Vis., 4, 1-73, (2008) · Zbl 1179.68188 · doi:10.1561/0600000020
[49] Ponce, A, A new approach to Sobolev spaces and connections to \(Γ \)-convergence, Calc. Var. Partial Differ. Equ., 19, 229-255, (2004) · Zbl 1352.46037 · doi:10.1007/s00526-003-0195-z
[50] Ponce, A.: Personal communication to the authors (2005)
[51] Ponce, A., Van Schaftingen, J.: Personal communication to the authors (2005)
[52] Rudin, LI; Osher, S; Fatemi, E, Nonlinear total variation based noise removal algorithms, Phys. D, 60, 259-268, (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[53] Smith, SM; Brady, JM, SUSAN—a new approach to low level image processing, Int. J. Comput. Vis., 23, 45-78, (1997) · doi:10.1023/A:1007963824710
[54] Van Schaftingen, J., Willem, M.: Set Transformations, Symmetrizations and Isoperimetric Inequalities, in Nonlinear Analysis and Applications to Physical Sciences, pp. 135-152. Springer Italia, Milan (2004) · Zbl 1453.26034
[55] Yaroslavsky, L.P.: Digital Picture Processing. An Introduction. Springer, Berlin (1985) · Zbl 0585.94001 · doi:10.1007/978-3-642-81929-2
[56] Yaroslavsky, L.P., Eden, M.: Fundamentals of Digital Optics. Springer, Berlin (1996) · Zbl 0877.94006 · doi:10.1007/978-1-4612-0845-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.