×

Characterization of Sobolev and BV spaces. (English) Zbl 1236.46032

J. Funct. Anal. 261, No. 10, 2926-2958 (2011); corrigendum ibid. 266, No. 2, 1106-1114 (2014).
The main purpose of this paper is to characterize the spaces \(W^{1,p}(\Omega)\), \(1<p<\infty\), and \(\text{BV}(\Omega)\) for arbitrary domains \(\Omega\subset\mathbb{R}^N\). The authors answer the following question posed by H. Brézis [Russ. Math. Surv. 57, No. 4, 693–708 (2002); translation from Usp. Mat. Nauk 57, No. 4, 59–74 (2002; Zbl 1072.46020)]: If \(f\in L^p(\Omega)\) and \[ \limsup_{\varepsilon\to 0}\;\int_\Omega\,\int_\Omega{|f(x)- f(y)|^p\over d_\Omega(x,y)^p} \widehat\rho_\varepsilon(d_\Omega(x,y))\,dx\,dy<+\infty, \] does this imply that \(f\) belongs to \(W^{1,p}(\Omega)\)? Here \(\rho_\varepsilon\) is a family of mollifiers satisfying certain conditions and \(\rho_\varepsilon(x)= \widehat\rho_\varepsilon(|x|)\), \(x\in\mathbb{R}^N\).

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
26B30 Absolutely continuous real functions of several variables, functions of bounded variation

Citations:

Zbl 1072.46020
Full Text: DOI

References:

[1] Adams, R.; Fournier, J., Sobolev Spaces, Pure Appl. Math. (2003), Academic Press: Academic Press Boston · Zbl 1098.46001
[2] L. Ambrosio, unpublished.; L. Ambrosio, unpublished.
[3] L. Ambrosio, G. De Philippis, L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals, preprint.; L. Ambrosio, G. De Philippis, L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals, preprint. · Zbl 1207.49051
[4] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr. (2000), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York · Zbl 0957.49001
[5] Aubert, G.; Kornprobst, P., Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems?, SIAM J. Numer. Anal., 47, 844-860 (2009) · Zbl 1189.35067
[6] Bertozzi, A.; Greer, J.; Osher, S.; Vixie, K., Nonlinear regularizations of TV based PDEs for image processing, (Nonlinear Partial Differential Equations and Related Analysis. Nonlinear Partial Differential Equations and Related Analysis, Contemp. Math., vol. 371 (2005), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 29-40 · Zbl 1134.35315
[7] Bourgain, J.; Brezis, H.; Mironescu, P., Another look at Sobolev spaces, (Menaldi, J. L.; etal., Optimal Control and Partial Differential Equations (2001), IOS Press), 439-455, (A volume in honour of A. Benssoussanʼs 60th birthday) · Zbl 1103.46310
[8] Bourgain, J.; Brezis, H.; Mironescu, P., Limiting embedding theorems for \(W^{s, p}\) when \(s \to 1^-\) and applications, J. Anal. Math., 87, 77-101 (2002) · Zbl 1029.46030
[9] Brezis, H., Analyse Fonctionnelle (1983), Masson: Masson Paris · Zbl 0511.46001
[10] Brezis, H., How to recognize constant functions. Connections with Sobolev spaces, Russian Math. Surveys, 57, 693-708 (2002) · Zbl 1072.46020
[11] Brezis, H., The interplay between analysis and topology in some nonlinear PDE problems, Bull. Amer. Math. Soc. (N.S.), 40, 179-201 (2003) · Zbl 1161.35354
[12] Dávila, J., On an open question about functions of bounded variation, Calc. Var. Partial Differential Equations, 15, 519-527 (2002) · Zbl 1047.46025
[13] Evans, L.; Gariepy, R., Measure Theory and Fine Properties of Functions (1992), CRC Press: CRC Press Boca Raton, FL · Zbl 0804.28001
[14] Fraenkel, L., On regularity of the boundary in the theory of Sobolev spaces, Proc. London Math. Soc. (3), 39, 385-427 (1979) · Zbl 0406.46026
[15] Gagliardo, E., Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in \(n\) variabili, Rend. Semin. Mat. Univ. Padova, 27, 284-305 (1957), (in Italian) · Zbl 0087.10902
[16] Gilboa, G.; Osher, S., Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6, 595-630 (2007) · Zbl 1140.68517
[17] Gilboa, G.; Osher, S., Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 1005-1028 (2008) · Zbl 1181.35006
[18] Karadzhov, G.; Milman, M.; Xiao, J., Limits of higher-order Besov spaces and sharp reiteration theorems, J. Funct. Anal., 221, 323-339 (2005) · Zbl 1102.46022
[19] Kolyada, V.; Lerner, A., On limiting embeddings of Besov spaces, Studia Math., 171, 1-13 (2005) · Zbl 1090.46026
[20] Leoni, G., A First Course in Sobolev Spaces (2009), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1180.46001
[21] Mazʼya, V.; Shaposhnikova, T., On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., 195, 230-238 (2002) · Zbl 1028.46050
[22] Milman, M., Notes on limits of Sobolev spaces and the continuity of interpolation scales, Trans. Amer. Math. Soc., 357, 3425-3442 (2005) · Zbl 1095.46015
[23] Nguyen, H., \(Γ\)-convergence and Sobolev norms, C. R. Math. Acad. Sci. Paris, 345, 679-684 (2007) · Zbl 1132.46026
[24] Nguyen, H., Further characterizations of Sobolev spaces, J. Eur. Math. Soc. (JEMS), 10, 191-229 (2008) · Zbl 1228.46033
[25] Ponce, A., A new approach to Sobolev spaces and connections to \(Γ\)-convergence, Calc. Var. Partial Differential Equations, 19, 229-255 (2004) · Zbl 1352.46037
[26] Ponce, A., An estimate in the spirit of Poincaréʼs inequality, J. Eur. Math. Soc. (JEMS), 6, 1-15 (2004) · Zbl 1051.46019
[27] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Phys. D, 60, 259-268 (1992) · Zbl 0780.49028
[28] Spector, D., Simple proofs of some results of Reshetnyak, Proc. Amer. Math. Soc., 139, 1681-1690 (2011) · Zbl 1215.49025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.