×

Coupled complex Ginzburg-Landau systems with saturable nonlinearity and asymmetric cross-phase modulation. (English) Zbl 1398.35222

Summary: We formulate and study dynamics from a complex Ginzburg-Landau system with saturable nonlinearity, including asymmetric cross-phase modulation (XPM) parameters. Such equations can model phenomena described by complex Ginzburg-Landau systems under the added assumption of saturable media. When the saturation parameter is set to zero, we recover a general complex cubic Ginzburg-Landau system with XPM. We first derive conditions for the existence of bounded dynamics, approximating the absorbing set for solutions. We use this to then determine conditions for amplitude death of a single wavefunction. We also construct exact plane wave solutions, and determine conditions for their modulational instability. In a degenerate limit where dispersion and nonlinearity balance, we reduce our system to a saturable nonlinear Schrödinger system with XPM parameters, and we demonstrate the existence and behavior of spatially heterogeneous stationary solutions in this limit. Using numerical simulations we verify the aforementioned analytical results, while also demonstrating other interesting emergent features of the dynamics, such as spatiotemporal chaos in the presence of modulational instability. In other regimes, coherent patterns including uniform states or banded structures arise, corresponding to certain stable stationary states. For sufficiently large yet equal XPM parameters, we observe a segregation of wavefunctions into different regions of the spatial domain, while when XPM parameters are large and take different values, one wavefunction may decay to zero in finite time over the spatial domain (in agreement with the amplitude death predicted analytically). We also find a collection of transient features, including transient defects and what appear to be rogue waves, while in two spatial dimensions we observe highly localized pattern formation. While saturation will often regularize the dynamics, such transient dynamics can still be observed - and in some cases even prolonged - as the saturability of the media is increased, as the saturation may act to slow the timescale.

MSC:

35Q56 Ginzburg-Landau equations
35B10 Periodic solutions to PDEs
35B35 Stability in context of PDEs

References:

[1] Aranson, I. S.; Kramer, L., Rev. Modern Phys., 74, 1, 99, (2002) · Zbl 1205.35299
[2] Nozaki, K.; Bekki, N., J. Phys. Soc. Japan, 53, 5, 1581-1582, (1984)
[3] Shraiman, B.; Pumir, A.; Van Saarloos, W.; Hohenberg, P.; Chaté, H.; Holen, M., Physica D, 57, 3, 241-248, (1992) · Zbl 0759.35045
[4] Chate, H., Nonlinearity, 7, 1, 185, (1994)
[5] Weber, A.; Kramer, L.; Aranson, I.; Aranson, L., Physica D, 61, 1-4, 279-283, (1992) · Zbl 0787.76026
[6] Biktasheva, I.; Elkin, Y. E.; Biktashev, V., Phys. Rev. E, 57, 3, 2656, (1998)
[7] Mielke, A., Nonlinearity, 10, 1, 199, (1997)
[8] Mielke, A., Physica D, 117, 1, 106-116, (1998) · Zbl 0939.35033
[9] Afanasjev, V.; Akhmediev, N.; Soto-Crespo, J., Phys. Rev. E, 53, 2, 1931, (1996)
[10] Moores, J. D., Opt. Commun., 96, 1-3, 65-70, (1993)
[11] Atai, J.; Malomed, B. A., Phys. Lett. A, 284, 6, 247-252, (2001) · Zbl 0977.78016
[12] Sugavanam, S.; Tarasov, N.; Wabnitz, S.; Churkin, D. V., Laser Photonics Rev., 9, 6, (2015)
[13] Pinsker, F., Ann. Physics, 362, 726-738, (2015) · Zbl 1343.82061
[14] Luckins, E. K.; Van Gorder, R. A., Ann. Physics, 388, 206-234, (2018) · Zbl 1382.35272
[15] Wong, P.; Pang, L.-H.; Huang, L.-G.; Li, Y.-Q.; Lei, M.; Liu, W.-J., Ann. Physics, 360, 341-348, (2015) · Zbl 1360.35261
[16] Ipsen, M.; Sørensen, P. G., Phys. Rev. Lett., 84, 11, 2389, (2000)
[17] Neufeld, M.; Walgraef, D.; San Miguel, M., Phys. Rev. E, 54, 6, 6344, (1996)
[18] Nistazakis, H.; Frantzeskakis, D.; Atai, J.; Malomed, B.; Efremidis, N.; Hizanidis, K., Phys. Rev. E, 65, 3, (2002)
[19] Malomed, B. A., Chaos, 17, 3, (2007) · Zbl 1163.37351
[20] Liu, W.-J.; Tian, B.; Lei, M., Laser Phys., 23, 9, (2013)
[21] Sakaguchi, H., Progr. Theoret. Phys., 93, 3, 491-502, (1995)
[22] San Miguel, M., Phys. Rev. Lett., 75, 3, 425, (1995)
[23] Treiber, M.; Kramer, L., Phys. Rev. E, 58, 2, 1973, (1998)
[24] Matkowsky, B.; Volpert, V., Physica D, 54, 3, 203-219, (1992) · Zbl 0742.76093
[25] Matkowsky, B.; Volpert, V. A., Q. Appl. Math., 51, 2, 265-281, (1993) · Zbl 0778.35107
[26] Sakaguchi, H., Progr. Theoret. Phys., 95, 4, 823-827, (1996)
[27] Sakaguchi, H., Phys. Scr., 1996, T67, 148, (1996)
[28] Hernández-García, E.; Hoyuelos, M.; Colet, P.; Miguel, M. S.; Montagne, R., Int. J. Bifurcation Chaos, 9, 12, 2257-2264, (1999)
[29] Hoyuelos, M.; Hernández-Garcıa, E.; Colet, P.; San Miguel, M., Physica D, 174, 1, 176-197, (2003) · Zbl 1076.35547
[30] Hoyuelos, M.; Jacobo, A., Phys. Rev. E, 71, 1, (2005)
[31] Porsezian, K.; Murali, R.; Malomed, B. A.; Ganapathy, R., Chaos Solitons Fractals, 40, 4, 1907-1913, (2009) · Zbl 1198.35266
[32] Descalzi, O.; Cisternas, J.; Brand, H. R., Phys. Rev. E, 74, 6, (2006)
[33] Descalzi, O.; Cisternas, J.; Gutiérrez, P.; Brand, H., Eur. Phys. J. Spec. Top., 146, 1, 63-70, (2007)
[34] Descalzi, O.; Cisternas, J.; Escaff, D.; Brand, H. R., Phys. Rev. Lett., 102, 18, (2009)
[35] Mancas, S. C.; Choudhury, S. R., Chaos Solitons Fractals, 40, 1, 91-105, (2009) · Zbl 1197.37097
[36] Alcaraz-Pelegrina, J.; Rodríguez-García, P., Phys. Lett. A, 374, 13, 1591-1599, (2010) · Zbl 1248.35201
[37] Zakeri, G.-A.; Yomba, E., Phys. Rev. E, 91, 6, (2015)
[38] Alcaraz-Pelegrina, J.; Rodriguez-Garcia, P., Phys. Lett. A, 375, 30, 2815-2822, (2011) · Zbl 1250.35164
[39] Ciszak, M.; Mayol, C.; Mirasso, C. R.; Toral, R., Phys. Rev. E, 92, 3, (2015)
[40] Jakubowski, M. H.; Steiglitz, K.; Squier, R., Phys. Rev. E, 56, 6, 7267, (1997)
[41] Litchinitser, N. M.; Królikowski, W.; Akhmediev, N. N.; Agrawal, G. P., Phys. Rev. E, 60, 2, 2377, (1999)
[42] Marburger, J.; Dawes, E., Phys. Rev. Lett., 21, 8, 556, (1968)
[43] Weilnau, C.; Ahles, M.; Petter, J.; Träger, D.; Schröder, J.; Denz, C., Ann. Phys., 11, 8, 573-629, (2002) · Zbl 1007.81078
[44] Reinbert, C. G.; Minzoni, A. A.; Smyth, N. F., J. Opt. Soc. Amer. B, 23, 2, 294-301, (2006)
[45] Skuse, B. D.; Smyth, N. F., Phys. Rev. A, 77, 1, (2008)
[46] Fleischer, J.; Segev, M.; Efremidis, N.; Christodoulides, D., Nature, 422, 6928, 147-150, (2003)
[47] Maluckov, A.; Hadžievski, L.; Lazarides, N.; Tsironis, G., Phys. Rev. E, 77, 4, (2008)
[48] Christodoulides, D.; Singh, S.; Carvalho, M.; Segev, M., Appl. Phys. Lett., 68, 13, 1763-1765, (1996)
[49] Kutuzov, V.; Petnikova, V.; Shuvalov, V.; Vysloukh, V., Phys. Rev. E, 57, 5, 6056, (1998)
[50] Musslimani, Z. H.; Segev, M.; Nepomnyashchy, A.; Kivshar, Y. S., Phys. Rev. E, 60, 2, R1170, (1999)
[51] Malmberg, J. N.; Carlsson, A. H.; Anderson, D.; Lisak, M.; Ostrovskaya, E. A.; Kivshar, Y. S., Opt. Lett., 25, 9, 643-645, (2000)
[52] Belić, M.; Jander, P.; Strinić, A.; Desyatnikov, A.; Denz, C., Phys. Rev. E, 68, 2, (2003)
[53] Salgueiro, J. R.; Kivshar, Y. S., Phys. Rev. E, 70, 5, (2004)
[54] Chow, K.; Malomed, B. A.; Nakkeeran, K., Phys. Lett. A, 359, 1, 37-41, (2006) · Zbl 1236.81081
[55] Salasnich, L.; Parola, A.; Reatto, L., Phys. Rev. A, 65, 4, (2002)
[56] Conte, R.; Chow, K., J. Nonlinear Math. Phys., 15, 4, 398-409, (2008) · Zbl 1165.39005
[57] de Almeida Maia, L.; Montefusco, E.; Pellacci, B., Calc. Var. Partial Differential Equations, 46, 1-2, 325-351, (2013) · Zbl 1257.35171
[58] Lin, T.-C.; Belić, M. R.; Petrović, M. S.; Chen, G., J. Math. Phys., 55, 1, (2014)
[59] Lin, T.-C.; Belić, M. R.; Petrović, M. S.; Hajaiej, H.; Chen, G., Calc. Var. Partial Differential Equations, 56, 5, 147, (2017)
[60] Karlsson, M., Phys. Rev. A, 46, 5, 2726, (1992)
[61] Gatz, S.; Herrmann, J., J. Opt. Soc. Amer. B, 14, 7, 1795-1806, (1997)
[62] Skuse, B. D.; Smyth, N. F., Phys. Rev. A, 79, 6, (2009)
[63] Cao, X.; Xu, J.; Wang, J.; Zhang, F., J. Math. Anal. Appl., 459, 1, 247-265, (2018) · Zbl 1382.35262
[64] Pereira, N. R.; Stenflo, L., Phys. Fluids, 20, 10, 1733, (1977) · Zbl 0364.35012
[65] Weiland, J.; Ichikawa, Y.; Wilhelmsson, H., Phys. Scr., 17, 5, 517, (1978)
[66] Cruz-Pacheco, G.; Levermore, C. D.; Luce, B. P., Physica D, 197, 3-4, 269-285, (2004) · Zbl 1061.35130
[67] Goldman, M. V.; Nicholson, D. R., Phys. Fluids, 20, 5, 756-761, (1977)
[68] Elphick, C.; Meron, E., Phys. Rev. A, 40, 6, 3226, (1989)
[69] Elphick, C.; Meron, E., Phys. Rev. Lett., 65, 19, 2476, (1990)
[70] van Saarloos, W.; Hohenberg, P., Physica D, 56, 4, 303-367, (1992) · Zbl 0763.35088
[71] R.A. Van Gorder, A.L. Krause, J.A. Kwiecinski, Generic amplitude death in coupled complex ginzburg-landau systems, arXiv preprint arXiv:1803.02147; R.A. Van Gorder, A.L. Krause, J.A. Kwiecinski, Generic amplitude death in coupled complex ginzburg-landau systems, arXiv preprint arXiv:1803.02147
[72] Robinson, J. C., Infinite-dimensional dynamical systems: an introduction to dissipative parabolic PDEs and the theory of global attractors, vol. 28, (2001), Cambridge University Press · Zbl 0980.35001
[73] Bretherton, C.; Spiegel, E., Phys. Lett. A, 96, 3, 152-156, (1983)
[74] Nozaki, K.; Bekki, N., Phys. Rev. Lett., 51, 24, 2171, (1983)
[75] Bartuccelli, M.; Constantin, P.; Doering, C. R.; Gibbon, J. D.; Gisselfält, M., Physica D, 44, 3, 421-444, (1990) · Zbl 0702.76061
[76] Conte, R.; Musette, M., Physica D, 69, 1-2, 1-17, (1993) · Zbl 0791.35129
[77] Keefe, L. R., Phys. Fluids, 29, 10, 3135-3141, (1986) · Zbl 0602.76061
[78] Gagnon, L., J. Opt. Soc. Am. A, 6, 9, 1477-1483, (1989)
[79] Gagnon, L.; Winternitz, P., J. Phys. A: Math. Gen., 21, 7, 1493, (1988) · Zbl 0694.35174
[80] Gagnon, L.; Winternitz, P., J. Phys. A: Math. Gen., 22, 5, 469, (1989) · Zbl 0707.35145
[81] Gagnon, L.; Grammaticos, B.; Ramani, A.; Winternitz, P., J. Phys. A: Math. Gen., 22, 5, 499, (1989) · Zbl 0707.35146
[82] Newton, P. K.; Sirovich, L., Q. Appl. Math., 44, 1, 49-58, (1986) · Zbl 0623.76006
[83] Gibson, C. J.; Yao, A. M.; Oppo, G. L., Phys. Rev. Lett., 116, 4, (2016)
[84] Teki, H.; Konishi, K.; Hara, N., Phys. Rev. E, 95, 6, (2017)
[85] Dodla, R.; Sen, A.; Johnston, G. L., Phys. Rev. E, 69, 5, (2004)
[86] Mehta, M. P.; Sen, A., Phys. Lett. A, 355, 3, 202-206, (2006)
[87] Liu, W.; Xiao, J.; Li, L.; Wu, Y.; Lu, M., Nonlinear Dynam., 69, 3, 1041-1050, (2012)
[88] Nakao, H., Eur. Phys. J. Spec. Top., 223, 12, 2411-2421, (2014)
[89] Banerjee, T., Europhys. Lett., 110, 6, 60003, (2015)
[90] Serkin, V.; Hasegawa, A., J. Experiment. Theor. Phy. Lett., 72, 2, 89-92, (2000)
[91] Baines, L. W.S.; Van Gorder, R. A., Phys. Rev. A, 97, 6, (2018)
[92] Fewo, S.; Atangana, J.; Kenfack-Jiotsa, A.; Kofane, T., Opt. Commun., 252, 1-3, 138-149, (2005)
[93] Pierangeli, D.; Di Mei, F.; Di Domenico, G.; Agranat, A.; Conti, C.; DelRe, E., Phys. Rev. Lett., 117, 18, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.