×

Energy estimates, relaxation, and existence for strain-gradient plasticity with cross-hardening. (English) Zbl 1397.74035

Conti, Sergio (ed.) et al., Analysis and computation of microstructure in finite plasticity. Cham: Springer (ISBN 978-3-319-18241-4/hbk; 978-3-319-18242-1/ebook). Lecture Notes in Applied and Computational Mechanics 78, 157-173 (2015).
Summary: We consider a variational formulation of gradient elasto-plasticity subject to a class of single-slip side conditions, and show how the nonconvexity effects induced by such conditions can be not only resolved mathematically, but also tested physically. We first show that, for a large class of plastic deformations, a given single-slip condition (specification of Burgers’ vectors and slip planes) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. This yields a relaxed side condition which only prescribes certain slip planes, and allows for arbitrary slip directions in these planes. The relaxed model should be a useful tool for simulating macroscopic plastic behavior without the need to resolve arbitrarily fine spatial scales. After deriving the relaxed model, we discuss a partial result on the existence of minimizers. Finally, we apply the relaxed model to a specific physical system, in order to be able to compare the analytical results with experiments. In particular, a rectangular shear sample in which only two slip planes are active is clamped at each end, and is subjected to a prescribed horizontal shear, which requires a certain amount of energy. We show that above some critical aspect ratio the energy is strictly positive and below that aspect ratio it is zero. Moreover, in the respective regimes determined by the aspect ratio, we prove energy scaling bounds, expressed in terms of the amount of prescribed shear, and we show that the scalings as well as the critical aspect ratio change radically if the single-slip condition or the strain gradient penalization is neglected.
For the entire collection see [Zbl 1318.74003].

MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type
74E15 Crystalline structure
74G65 Energy minimization in equilibrium problems in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI

References:

[1] Albin, N.; Conti, S.; Dolzmann, G., Infinite-order laminates in a model in crystal plasticity, Proc. Roy. Soc. Edinburgh Sect. A, 139, 4, 685-708 (2009) · Zbl 1167.74010 · doi:10.1017/S0308210508000127
[2] Anguige, K.; Dondl, P. W., Optimal energy scaling for a shear experiment in single-crystal plasticity with cross-hardening, Z. Angew. Math. Phys., 65, 5, 1011-1030 (2014) · Zbl 1305.74025 · doi:10.1007/s00033-013-0379-0
[3] Anguige, K., Dondl, P.W.: Relaxation of the single-slip condition in strain-gradient plasticity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 470(2169) (2014) · Zbl 1348.74070
[4] Bay, B.; Hansen, N.; Hughes, D. A.; Kuhlmann-Wilsdorf, D., Overview no-96 - evolution of FCC deformation structures in polyslip, Acta Metall. Mater., 40, 2, 205-219 (1992) · doi:10.1016/0956-7151(92)90296-Q
[5] Cao, G. H.; Becker, A. T.; Wu, D.; Chumbley, L. S.; Lograsso, T. A.; Russell, A. M.; Gschneidner, K. A., Mechanical properties and determination of slip systems of the B2 YZn intermetallic compound, Acta Mater., 58, 12, 4298-4304 (2010) · doi:10.1016/j.actamat.2010.04.024
[6] Conti, S.; Dolzmann, G.; Klust, C., Relaxation of a class of variational models in crystal plasticity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 465, 2106, 1735-1742 (2009) · Zbl 1186.74023 · doi:10.1098/rspa.2008.0390
[7] Conti, S.; Dolzmann, G.; Kreisbeck, C., Relaxation of a model in finite plasticity with two slip systems, Math. Models Methods Appl. Sci., 23, 11, 2111-2128 (2013) · Zbl 1281.49006 · doi:10.1142/S0218202513500279
[8] Cermelli, P.; Gurtin, M. E., On the characterization of geometrically necessary dislocations in finite plasticity, J. Mech. Phys. Solids, 49, 7, 1539-1568 (2001) · Zbl 0989.74013 · doi:10.1016/S0022-5096(00)00084-3
[9] Carstensen, C.; Hackl, K.; Mielke, A., Non-convex potentials and microstructures in finite-strain plasticity, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 458, 2018, 299-317 (2002) · Zbl 1008.74016 · doi:10.1098/rspa.2001.0864
[10] Conti, S.; Ortiz, M., Dislocation microstructures and the effective behavior of single crystals, Arch. Ration. Mech. An., 176, 1, 103-147 (2005) · Zbl 1064.74144 · doi:10.1007/s00205-004-0353-2
[11] Conti, S.; Theil, F., Single-slip elastoplastic microstructures, Arch. Ration. Mech. An., 178, 1, 125-148 (2005) · Zbl 1076.74017 · doi:10.1007/s00205-005-0371-8
[12] Dmitrieva, O.; Dondl, P. W.; Mueller, S.; Raabe, D., Lamination microstructure in shear deformed copper single crystals, Acta Mater., 57, 12, 3439-3449 (2009) · doi:10.1016/j.actamat.2009.03.035
[13] Devincre, B.; Hoc, T.; Kubin, L. P., Collinear interactions of dislocations and slip systems, Mater. Sci. Engrng. A, 400-401, 182-185 (2005) · doi:10.1016/j.msea.2005.02.071
[14] Devincre, B.; Kubin, L.; Hoc, T., Collinear superjogs and the low-stress response of fcc crystals, Scripta Mater., 57, 10, 905-908 (2007) · doi:10.1016/j.scriptamat.2007.07.026
[15] Demir, E.; Raabe, D.; Roters, F., The mechanical size effect as a mean-field breakdown phenomenon: Example of microscale single crystal beam bending, Acta Mater., 58, 5, 1876-1886 (2010) · doi:10.1016/j.actamat.2009.11.031
[16] Franciosi, P.; Berveiller, M.; Zaoui, A., Latent hardening in copper and aluminum single-crystals, Acta Metall., 28, 3, 273-283 (1980) · doi:10.1016/0001-6160(80)90162-5
[17] Fokoua, L.; Conti, S.; Ortiz, M., Optimal scaling in solids undergoing ductile fracture by void sheet formation, Arch. Ration. Mech. An., 212, 1, 331-357 (2014) · Zbl 1294.35161 · doi:10.1007/s00205-013-0687-8
[18] Franciosi, P.; Zaoui, A., Multislip Tests on Copper-Crystals - a Junctions Hardening Effect, Acta Metall., 30, 12, 2141-2151 (1982) · doi:10.1016/0001-6160(82)90135-3
[19] Hansen, B. L.; Bronkhorst, C. A.; Ortiz, M., Dislocation subgrain structures and modeling the plastic hardening of metallic single crystals, Model. Simul. Mater. Sc., 18, 5, 55001 (2010) · doi:10.1088/0965-0393/18/5/055001
[20] Hughes, D.; Chrzan, D.; Liu, Q.; Hansen, N., Scaling of misorientation angle distributions, Phys. Rev. Lett., 81, 21, 4664-4667 (1998) · doi:10.1103/PhysRevLett.81.4664
[21] Hughes, D. A.; Liu, Q.; Chrzan, D. C.; Hansen, N., Scaling of microstructural parameters: Misorientations of deformation induced boundaries, Acta Mater., 45, 1, 105-112 (1997) · doi:10.1016/S1359-6454(96)00153-X
[22] Hildebrand, F.; Miehe, C., Variational phase field modeling of laminate deformation microstructure in finite gradient crystal plasticity, Proc. Appl. Math. Mech., 12, 1, 37-40 (2012) · doi:10.1002/pamm.201210011
[23] Jin, N. Y.; Winter, A. T., Dislocation-structures in cyclically deformed [001] copper-crystals, Acta Metall., 32, 8, 1173-1176 (1984) · doi:10.1016/0001-6160(84)90123-8
[24] Kochmann, D. M.; Hackl, K., The evolution of laminates in finite crystal plasticity: a variational approach, Continuum Mech. Thermodyn., 23, 1, 63-85 (2011) · Zbl 1272.74081 · doi:10.1007/s00161-010-0174-5
[25] Kocks, U. F., Latent hardening and secondary slip in aluminum and silver, Trans. Metall. Soc. AIME, 230, 5, 1160-1167 (1964)
[26] Kondo, K.: On the geometrical and physical foundations of the theory of yielding. In: Proc. 2nd Japan Nat. Congr. Applied Mechanics, pp. 41-47 (1952)
[27] Lejcek, P., Grain Boundary Segregation in Metals (2010), Heidelberg: Springer Science & Business Media, Heidelberg
[28] Lee, E. H.; Liu, D. T., Finite-Strain Elastic-Plastic Theory with Application to Plane-Wave Analysis, J. Appl. Phys., 38, 1, 19-27 (1967) · doi:10.1063/1.1708953
[29] Miehe, C., Microstructure development in standard dissipative solids based on energy minimization, GAMM-Mitt., 29, 2, 247-272 (2006) · Zbl 1158.74010 · doi:10.1002/gamm.201490032
[30] Mielke, A.; Müller, S., Lower semicontinuity and existence of minimizers in incremental finite-strain elastoplasticity, Z. Angew. Math. Mech., 86, 3, 233-250 (2006) · Zbl 1102.74006 · doi:10.1002/zamm.200510245
[31] Mainik, A.; Mielke, A., Global existence for rate-independent gradient plasticity at finite strain, J. Nonlinear Sci., 19, 3, 221-248 (2009) · Zbl 1173.49013 · doi:10.1007/s00332-008-9033-y
[32] Nix, W. D.; Gibeling, J. C.; Hughes, D. A., Time-dependent deformation of metals, Metall. Trans. A, 16, 12, 2215-2226 (1985) · doi:10.1007/BF02670420
[33] Nye, J. F., Some geometrical relations in dislocated crystals, Acta Metall., 1, 2, 153-162 (1953) · doi:10.1016/0001-6160(53)90054-6
[34] Ortiz, M.; Repetto, E. A., Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47, 2, 397-462 (1999) · Zbl 0964.74012 · doi:10.1016/S0022-5096(97)00096-3
[35] Reina, C.; Conti, S., Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of F = F^eF^p, J. Mech. Phys. Solids, 67, 40-61 (2014) · Zbl 1323.74018 · doi:10.1016/j.jmps.2014.01.014
[36] Rasmussen, K. V.; Pedersen, O. B., Fatigue of copper polycrystals at low plastic strain amplitudes, Acta Metall., 28, 11, 1467-1478 (1980) · doi:10.1016/0001-6160(80)90047-4
[37] Rodney, D.; Phillips, R., Structure and strength of dislocation junctions: An atomic level analysis, Phys. Rev. Lett., 82, 8, 1704-1707 (1999) · doi:10.1103/PhysRevLett.82.1704
[38] Uchic, M.; Dimiduk, D.; Florando, J.; Nix, W., Sample dimensions influence strength and crystal plasticity, Science, 305, 5686, 986-989 (2004) · doi:10.1126/science.1098993
[39] Wu, T. Y.; Bassani, J. L.; Laird, C., Latent hardening in single-crystals .1. theory and experiments, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 435, 1-19 (1893) · Zbl 0731.73020 · doi:10.1098/rspa.1991.0127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.