×

Optimal scaling in solids undergoing ductile fracture by void sheet formation. (English) Zbl 1294.35161

The aim of this paper is to present a rigorous analysis of some quantitative properties of ductile fracture. The key strategies consists of the derivation of optimal scaling laws as opposed to searching for exact minimizer for energies exhibiting both sub-linear growth in the local limit and strain gradient hardening. A number of theorems and lemmas are developed for the solution and stability of the problem. No numerical examples are developed for the illustration.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
74C99 Plastic materials, materials of stress-rate and internal-variable type
Full Text: DOI

References:

[1] Aubry S., Ortiz M. (2003) The mechanics of deformation-induced subgrain-dislocation structures in metallic crystals at large strains. Proc. R. Soc. Lond. A 459: 3131-3158 · Zbl 1041.74506 · doi:10.1098/rspa.2003.1179
[2] Bai Y., Dodd B. (1992) Adiabatic Shear Localization: Occurrence, Theories, and Applications, 1st edn. Pergamon Press, Oxford
[3] Ball J.M. (1982) Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. Ser. A 306(1496): 557-611 · Zbl 0513.73020 · doi:10.1098/rsta.1982.0095
[4] Bassani J.L. (2001) Incompatibility and a simple gradient theory of plasticity. J. Mech. Phys. Solids 49(9): 1983-1996 · Zbl 1030.74015 · doi:10.1016/S0022-5096(01)00037-0
[5] Choksi R., Kohn R.V., Otto F. (1999) Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Commun. Math. Phys. 201: 61-79 · Zbl 1023.82011 · doi:10.1007/s002200050549
[6] Considère A. (1885) Mémoire sur lemploi du fer et de lacier dans les constructions. Annales des Ponts et Chaussées 9: 574-775
[7] Conti S. (2000) Branched microstructures: scaling and asymptotic self-similarity. Commun. Pure Appl. Math. 53: 1448-1474 · Zbl 1032.74044 · doi:10.1002/1097-0312(200011)53:11<1448::AID-CPA6>3.0.CO;2-C
[8] Conti S., DeLellis C. (2003) Some remarks on the theory of elasticity for compressible neohookean materials. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5(2): 521-549 · Zbl 1114.74004
[9] Conti S., Garroni A., Müller S. (2011) Singular kernels, multiscale decomposition of microstructure, and dislocation models. Arch. Rational Mech. Anal. 199(3): 779-819 · Zbl 1251.74006 · doi:10.1007/s00205-010-0333-7
[10] Conti S., Ortiz M. (2005) Dislocation microstructures and the effective behavior of single crystals. Arch. Rational Mech. Anal. 176: 103-147 · Zbl 1064.74144 · doi:10.1007/s00205-004-0353-2
[11] Fleck N.A., Hutchinson J.W. (1993) A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12): 1825-1857 · Zbl 0791.73029 · doi:10.1016/0022-5096(93)90072-N
[12] Fleck N.A., Hutchinson J.W. (1997) Strain gradient plasticity. Adv. Appl. Mech. 33: 295-361 · Zbl 0894.73031 · doi:10.1016/S0065-2156(08)70388-0
[13] Fleck N.A., Hutchinson J.W. (2001) A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49(10): 2245-2271 · Zbl 1033.74006 · doi:10.1016/S0022-5096(01)00049-7
[14] Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W. (1994) Strain gradient plasticity—theory and experiment. Acta Metallurgica Et Materialia 42(2): 475-487 · doi:10.1016/0956-7151(94)90502-9
[15] Garrison W.M., Moody N.R. (1987) Ductile fracture. J. Phys. Chem. Solids 48: 1035-1074 · doi:10.1016/0022-3697(87)90118-1
[16] Garroni A., Leoni G., Ponsiglione M. (2010) Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. 12(5): 1231-1266 · Zbl 1200.74017 · doi:10.4171/JEMS/228
[17] Garroni A., Müller S. (2005) Gamma-limit of a phase-field model of dislocations. SIAM J. Math. Anal. 36(6): 1943-1964 · Zbl 1094.82008 · doi:10.1137/S003614100343768X
[18] Garroni A., Müller S. (2006) A variational model for dislocations in the line tension limit. Arch. Rational Mech. Anal. 181(3): 535-578 · Zbl 1158.74365 · doi:10.1007/s00205-006-0432-7
[19] Heller, A.: How metals fail. Science & Technology Review Magazine, Lawrence Livermore National Laboratory pp. 13-20, 2002 · Zbl 0836.73025
[20] Henao D., Mora-Corral C. (2010) Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Rational Mech. Anal. 197: 619-655 · Zbl 1248.74006 · doi:10.1007/s00205-009-0271-4
[21] Huang Y., Xue Z., Gao H., Nix W.D., Xia Z.C. (2000) A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J. Mater. Res. 15(8): 1786-1796 · doi:10.1557/JMR.2000.0258
[22] Kanninen M.F., Popelar C.H. (1985) Advanced fracture mechanics. OxfordEngineeringScienceSeries. Oxford University Press, New York · Zbl 0587.73140
[23] Kohn R.V., Müller S. (1992) Branching of twins near an austenite-twinned-martensite interface. Phil. Mag. A 66: 697-715 · doi:10.1080/01418619208201585
[24] Kohn R.V., Müller S. (1994) Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47: 405-435 · Zbl 0803.49007 · doi:10.1002/cpa.3160470402
[25] Kröner, E.: Mechanics of generalized continua. In: Proceedings of the IUTAM-symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany) 1967. Springer, Berlin, 1968 · Zbl 0169.00201
[26] Kuroda M., Tvergaard V. (2008) A finite deformation theory of higher-order gradient crystal plasticity. J. Mech. Phys. Solids 56(8): 2573-2584 · Zbl 1171.74324 · doi:10.1016/j.jmps.2008.03.010
[27] Kuroda M., Tvergaard V. (2008) On the formulations of higher-order strain gradient crystal plasticity models. J. Mech. Phys. Solids 56(4): 1591-1608 · Zbl 1171.74332 · doi:10.1016/j.jmps.2007.07.015
[28] Kuroda M., Tvergaard V. (2010) An alternative treatment of phenomenological higher-order strain-gradient plasticity theory. Int. J. Plast. 26(4): 507-515 · Zbl 1426.74059 · doi:10.1016/j.ijplas.2009.09.001
[29] Lubliner J. (1990) Plasticity Theory. Macmillan, New York · Zbl 0745.73006
[30] Martin J.B. (1975) Plasticity: fundamentals and general results. MIT Press, Cambridge
[31] McClintock, F.A., Argon, A.S.: Mechanical behavior of materials. In: Addison-Wesley Series in Metallurgy and Materials. Addison-Wesley, Reading, 1966
[32] Mielke A., Ortiz M. (2008) A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM Control Optim. Calc. Var. 14(3): 494-516 · Zbl 1357.49043 · doi:10.1051/cocv:2007064
[33] Müller S., Spector S.J. (1995) An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal. 131: 1-66 · Zbl 0836.73025 · doi:10.1007/BF00386070
[34] Needleman A., Tvergaard V., Bouchaud E. (2012) Prediction of ductile fracture surface roughness scaling. J. Appl. Mech. Trans. ASME 79: 3 · doi:10.1115/1.4005959
[35] Nix W.D., Gao H.J. (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3): 411-425 · Zbl 0977.74557 · doi:10.1016/S0022-5096(97)00086-0
[36] Ortiz M., Repetto E. (1999) Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2): 397-462 · Zbl 0964.74012 · doi:10.1016/S0022-5096(97)00096-3
[37] Ortiz M., Repetto E., Stainier L. (2000) A theory of subgrain dislocation structures. J. Mech. Phys. Solids 48: 2077-2114 · Zbl 1001.74007 · doi:10.1016/S0022-5096(99)00104-0
[38] Pardoen T., Hutchinson J.W. (2003) Micromechanics-based model for trends in toughness of ductile metals. Acta Mater. 51(1): 133-148 · doi:10.1016/S1359-6454(02)00386-5
[39] Rice J.R., Thomson R. (1974) Ductile versus brittle behavior of crystals. Philos. Mag. 29(1): 73-97 · doi:10.1080/14786437408213555
[40] Sverák V. (1988) Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal. 100: 105-127 · Zbl 0659.73038 · doi:10.1007/BF00282200
[41] Tvergaard V. (1982) Ductile fracture by cavity nucleation between larger voids. J. Mech. Phys. Solids 30(4): 265-286 · Zbl 0491.73118 · doi:10.1016/0022-5096(82)90033-3
[42] Tvergaard V. (1990) Material failure by void growth to coalescence. Adv. Appl. Mech. 27: 83-151 · Zbl 0728.73058 · doi:10.1016/S0065-2156(08)70195-9
[43] Tvergaard V. (1992) A numerical-analysis of 3d localization failure by a void-sheet mechanism. Eng. Fract. Mech. 41(6): 787-803 · doi:10.1016/0013-7944(92)90232-4
[44] Xue Z., Huang Y., Gao F., Nix W.D. (2000) The strain gradient effects in micro-indentation hardness experiments. Multisc. Phenom. Mater. Exp. Model. 578: 53-58
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.