×

Moving planes for nonlinear fractional Laplacian equation with negative powers. (English) Zbl 1397.35330

Summary: In this paper, we study symmetry properties of positive solutions to the fractional Laplace equation with negative powers on the whole space. We can use the direct method of moving planes introduced by S. Jarohs and T. Weth [Ann. Mat. Pura Appl. (4) 195, No. 1, 273–291 (2016; Zbl 1346.35010)] and W. Chen et al. [Adv. Math. 308, 404–437 (2017; Zbl 1362.35320)]to prove one particular result below. If \(u\in C^{1, 1}_{\mathrm{loc}}(\mathbb{R}^{n})\cap L_{\alpha}\) satisfies \[ (-\Delta)^{\alpha/2}u(x)+u^{-\beta}(x) = 0,\;\, x\in \mathbb{R}^n, \] with the growth/decay property \[ u(x) = a|x|^{m}+o(1),\;\, \text{as}\; |x|\to \infty, \] where \(\frac{\alpha}{\beta+1}<m<1\), \(a>0\) is a constant, then the positive solution \(u(x)\) must be radially symmetric about some point in \(\mathbb{R}^{n}\). Similar result is also true for Hénon type nonlinear fractional Laplace equation with negative powers.

MSC:

35R11 Fractional partial differential equations
35J60 Nonlinear elliptic equations
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58J05 Elliptic equations on manifolds, general theory
Full Text: DOI

References:

[1] A. L. Bertozzi; M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Comm. Pure Appl. Math., 51, 625-661 (1998) · Zbl 0916.35008 · doi:10.1002/(SICI)1097-0312(199806)51:63.0.CO;2-9
[2] A. L. Bertozzi; M. C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49, 1323-1366 (2000) · Zbl 0978.35007 · doi:10.1512/iumj.2000.49.1887
[3] C. Brandle; E. Colorado; A. de Pablo; U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc Royal Soc. of Edinburgh, 143, 39-71 (2013) · Zbl 1290.35304 · doi:10.1017/S0308210511000175
[4] L. Caffarelli; L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[5] W. X. Chen; C. M. Li; Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308, 404-437 (2017) · Zbl 1362.35320 · doi:10.1016/j.aim.2016.11.038
[6] W. Chen; C. Li; B. Ou, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyn. Sys., 12, 347-354 (2005) · Zbl 1081.45003
[7] W. X. Chen; Y. Li; R. B. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272, 4131-4157 (2017) · Zbl 1431.35225 · doi:10.1016/j.jfa.2017.02.022
[8] R. Dal Passo; L. Giacomelli; A. Shishkov, The thin film equation with nonlinear diffusion, Comm. Partial Differential Equations, 26, 1509-1557 (2001) · Zbl 1001.35070 · doi:10.1081/PDE-100107451
[9] J. Davila; K. Wang; J. C. Wei, Qualitative analysis of rupture solutions for a MEMS problem, Ann. Inst. H. Poincare Anal. Non Lineaire, 33, 221-242 (2016) · Zbl 1350.35093 · doi:10.1016/j.anihpc.2014.09.009
[10] S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differential Equations, 55 (2016), Art. 99, 29 pp. · Zbl 1361.35191
[11] Y. H. Du; Z. M. Guo, Positive solutions of an elliptic equation with negative exponent: stability and critical power, J. Differential Equations, 246, 2387-2414 (2009) · Zbl 1163.35018 · doi:10.1016/j.jde.2008.08.008
[12] P. Felmer and Y. Wang, Radial symmetry of positive solutions to equa- tions involving the fractional Laplacian, Commun. Contemp. Math., 16 (2014), 1350023, 24pp. · Zbl 1286.35016
[13] N. Ghoussoub; Y. J. Guo, On the partial differential equations of electrostatic MEMS devices: Stationary case, SIAM J. Math. Anal., 38, 1423-1449 (2006) · Zbl 1174.35040 · doi:10.1137/050647803
[14] Z. M. Guo; J. C. Wei, Symmetry of non-negative solutions of a semilinear elliptic equation with singular nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 137, 963-994 (2007) · Zbl 1158.35035 · doi:10.1017/S0308210505001083
[15] S. Jarohs; T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Annali di Math. Pura ed Appl., 195, 273-291 (2016) · Zbl 1346.35010 · doi:10.1007/s10231-014-0462-y
[16] H. Q. Jiang; W. M. Ni, On steady states of van der Waals force driven thin film equations, European J. Appl. Math., 18, 153-180 (2007) · Zbl 1135.35035 · doi:10.1017/S0956792507006936
[17] R. S. Laugesen; M. C. Pugh, Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Ration. Mech. Anal., 154, 3-51 (2000) · Zbl 0980.35030 · doi:10.1007/PL00004234
[18] Y. T. Lei, On the integral systems with negative exponents, Discrete Contin. Dyn. Syst., 35, 1039-1057 (2015) · Zbl 1304.45006 · doi:10.3934/dcds.2015.35.1039
[19] B. Y. Liu; L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Anal., 146, 120-135 (2016) · Zbl 1348.35296 · doi:10.1016/j.na.2016.08.022
[20] L. Ma, Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation, C. R. Math. Acad. Sci. Paris., 348, 993-996 (2010) · Zbl 1201.35063 · doi:10.1016/j.crma.2010.07.031
[21] L. Ma; J. C. Wei, Properties of positive solutions to an elliptic equation with negative exponent, J. Funct. Anal., 254, 1058-1087 (2008) · Zbl 1136.35036 · doi:10.1016/j.jfa.2007.09.017
[22] L. Ma; J. C. Wei, Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds, J. Math. Pures Appl., 99, 174-186 (2013) · Zbl 1263.58010 · doi:10.1016/j.matpur.2012.06.009
[23] L. Ma; X. W. Xu, Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space, C. R. Math. Acad. Sci. Paris, 347, 805-808 (2009) · Zbl 1167.35320 · doi:10.1016/j.crma.2009.04.017
[24] L. Ma; L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195, 455-467 (2010) · Zbl 1185.35260 · doi:10.1007/s00205-008-0208-3
[25] A. Meadows, Stable and singular solutions of the equation \(\begin{document} Δ u = \frac{1}{u} \end{document} \), Indiana Univ. Math. J., 53, 1681-1703 (2004) · Zbl 1129.35395 · doi:10.1512/iumj.2004.53.2560
[26] M. Montenegro; E. Valdinoci, Pointwise estimates and monotonicity formulas without maximum principle, J. Convex Anal., 20, 199-220 (2013) · Zbl 1371.35129
[27] N. Soave and E. Valdinoci, Overdetermined problems for the fractional Laplacian in exterior and annular sets, Preprint arXiv: 1412.5074.
[28] X. F. Song; L. Zhao, Gradient estimates for the elliptic and parabolic Lichnerowicz equations on compact manifolds, Z. Angew. Math. Phys., 61, 655-662 (2010) · Zbl 1223.58013 · doi:10.1007/s00033-009-0047-6
[29] X. Xu, Uniqueness theorem for integral equations and its application, J. Funct. Anal., 247, 95-109 (2007) · Zbl 1153.45005 · doi:10.1016/j.jfa.2007.03.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.